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INTRODUCTION 

Proplonlbacterla are taxonomically Interesting and economically Im­

portant bacteria. Their natural habitat is the digestive tract of rumi­

nants and, possibly, other mammals. They are frequently found In such 

fermenting natural products as silage or whey. Because of their common 

occurrence In milk and their relatively unique metabolism. It Is not 

surprising that they should be responsible for both beneficial and un­

desirable results in cheese curing. Although of much less commercial 

significance, proplonlbacterla may be used to synthesize vitamin &&&, 

also, propionic acid which is used in perfumes and solvents. 

Proplonlbacterla play an Important part in ruminant nutrition. 

Occurring in large numbers in the rumen, they ferment carbohydrates and 

lactic acid formed by other rumen microorganisms to carbon dioxide and 

acetic and propionic acids. These fatty acids plus butyric acid serve 

as the principal energy source for ruminants (171, p. 550). 

The major commercial use of proplonlbacterla is in the manufacture 

of Swiss cheese, which is an Important cheese variety in the United States 

(178). In the earlier prototypes of what we now call Swiss cheese, and, 

indeed, even today in Swiss cheese manufactured in other countries of the 

world, the necessary proplonlbacterla were either present in the raw milk 

or were added as contaminants in the rennet prepared by steeping calf 

stomachs in whey. The common practice in the United States now is to 

inoculate pure cultures of proplonlbacterla into the milk. 

The homofermentative starter organisms (lactic streptococci and 

Streptococcus thermophilus) and lactobacllli, also added during the 
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manufacture of Swiss cheese, produce lactic acid from the lactose of the 

vat milk. The propionibacteria then utilize the lactic acid during "hot-

room" curing to form acetic and propionic acids, carbon dioxide, and water 

according to the following formula: 

OH 

SCHgCHCOOH CHgCOOH + ZCH^CHgCOOH + CO^ + HgO 

Lactate is oxidized to pyruvate by lactate dehydrogenase in the presence 

of the oxidized coenzyme nicotinamide adenine dinucleotide (NAD^). The 

pyruvate then enters the propionic-acid fermentation pathway of Allen et 

al. (2) shown in Fig. 1. Acetic and propionic acids contribute to the 

characteristic flavor of Swiss cheese and the carbon dioxide collects in 

weak areas of the curd to form spherical openings called "eyes". 

All species of Propionibacterium, except the pigmented species, could 

be used for Swiss cheese manufacture, provided they do not induce off-

flavors. The pigmented species frequently form visible colonies which 

appear as undesirable pink, brown, or red spots. Some strains, able to 

grow at low temperatures, contribute to the "split" defect of Swiss cheese 

by producing too much carbon dioxide during the later stages of curing. 

The Dairy Microbiology section of the Food Technology Department, 

Iowa State University, has been active in research on members of the genus 

Propionibacterium. Some of these investigations have been related to 

their previously unrecognized ability to grow at low temperature (140), 

their relationship to the split defect of Swiss cheese (83, 139), their 

inhibition by the globulin fraction of milk and whey (183), their produc­

tion of capsules and loose slime (169), their production of diacetyl (107), 

and the taxonomic interrelationships of the various species within the 
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genus (122). The taxonomic study, conducted by Malik et al. (122), sub­

stantiated the earlier observation (16) that the only difference between 

Propionibacterium shermanll and Propionlbacterium freudenreichll is in 

lactose-utilizing ability. Propionibacterium shermanii can ferment lac­

tose, while 2» freudenreichii cannot. Furthermore, all other species of 

propionibacteria are known to utilize lactose (16). In a current investi­

gation in our laboratory, DNA base ratios of Propionibacterium species 

are being determined to supplement earlier taxonomic investigations. 

The question immediately arose, "Is 2» freudenriechii deficient in 3-

galactosidase or in the specific permease responsible for transporting 

the substrate lactose into the cell?" The enzyme g-galactosidase (E.G. 

3.2.1.23, 3-D-galactoside galactohydrolase) hydrolyzes lactose into glu­

cose and galactose. Although considerable work has been done on the nu­

trition and metabolism of propionibacteria (82), very few investigations 

have been made on the 3-galactosidase of this important genus. 

Lactose utilization by these bacteria has usually been determined by 

using lactose broth containing bromthymol blue indicator to detect pH 

change. This procedure is not as sensitive as the enzymatic method of 

Lederberg (106) which uses the chromogenic substrate o-nitrophenyl-3-D-

galactopyranoslde (ONPG). The enzyme 3-galactosidase hydrolyzes the S-

linkage of ONPG to yield galactose and o-nitrophenol (ONP), a colored com­

pound with maximum absorbance at 420 nm. It is possible that P. freuden­

reichii might possess a low level of enzyme activity that results in insuf­

ficient acid to change the color of the indicator in lactose broth but 

which could probably be detected by the sensitive ONPG hydrolysis technique. 

Knowledge of the exact reason for the failure of P. freudenreichii to 
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actively utilize lactose would provide Important taxonoralc Information on 

these two closely related Proplonlbacterlum species. Because the 3-

galactosldase activity of jP. shermanii and freudenrelchll has not been 

studied previously, and because such a study would supplement the previous 

accomplishments in our laboratory, this study was undertaken. Results of 

this investigation should be of taxonomic, academic, and economic impor­

tance. 
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LITERATURE REVIEW 

Because 3-galactosidase is a very stable enzyme, it has been a 

favorite for the enzymologist. Consequently, there has been a vast amount 

of work done using this enzyme system. Escherichia coli has a high level 

of 3-galactosidase activity, is easy to cultivate, and undergoes genetic 

recombination. Therefore, it has been used for many of the investigations 

with 3-galactosidase. The literature, however, contains few references to 

the study of Propionibacterium. in this context. 

To orient the reader who may not be fully familiar with this enzyme 

system, a brief discussion of the significance and distribution of 3-

galactosidase is given. 

3-Galactosidase 

3-Galactosidase (E.G. 3.2.1.23, 3-B-galactoside galactohydrolase) 

(67) hydrolyzes lactose (4-0-3-D-galactopyranosyl-D-glucopyranose) (28, p. 

161) into glucose and galactose. 3-Galactosidase was called lactase in 

earlier literature (12, 28, 126, 184). Rnopfmacher and Salle (97) credit 

Beyerinck (12) with naming this enzyme lactase. Many authors continue to 

refer to 3-galactosidase activity on lactose as lactase activity (46, 160, 

179, 199, 200). 

In addition to hydrolytic activity, 3-galactosldase possesses transfer 

activity. That is, the galactose moiety of the galactoside molecule may be 

transferred to water (the hydrolytic reaction), or to some other hydroxylic 

acceptor (such as another sugar or an alcohol (9, 19, 52, 141, 142, 143, 

156, 173, 174, 184, 186, 190, 191, 194). 
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Specificity of 3-Galactosldase 

Plgman (144) reported that B-galactosldase hydrolyzes B-D-galactosldes, 

a-L-arablnosides, lactose, and 3-D- and L-glycero-D-galacto-aldo-heptosldes. 

He was not certain if 3-D-fucosides and a-D-galactouronldes would be 

hydrolyzed. 3-Galactosidase is inactive on sugars not possessing the 3-

galactosidic configuration (36) but exhibits strict specificity require­

ments for the structure of the glycon part of the substrate molecule (189, 

190, 195). Only changes in substituents on C-5 of the D-galactose (glycon) 

residue are compatible with hydrolyzability. 3-Galactosidase shows great 

tolerance for changes of the aglycon part of the molecule, which may be 

another sugar residue, an alkyi group, or an aryl group (190). The hydrol­

ysis rate, however, is affected by the aglycon (100, 144, 184). 

Distribution in Nature 

B-Galactosidase is widely distributed in nature. Veibel (184) and 

Wallenfels and Malhotra (189, 190) reviewed its distribution in plants, 

animals, birds, insects, and microorganisms. 

3-Galactosidase in plants 

Wehmer and Hadders (196) have listed the families of the plant kingdom 

in which the enzyme is known to occur. The function of. 3-galactosidase in 

plants is believed to be to hydrolyze glycosides which have the 3-linkage 

(181). It also catalyses synthesis (transferase) reactions in plants 

(173). 
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B-Galactosldase In animals 

The primary site of 3-galactosidase activity in animals is the intes­

tine (1, 3, 21, 34, 46, 58, 76, 121) where it hydrolyzes lactose from the 

diet. The enzyme also is present in the pancreas, kidney, adrenal, thy­

roid, spleen, liver, testis, epididymis, vas deferens, and male accessory 

secretions (20, 34, 40, 41, 42, 55, 76, 162). Cohen et al. (34) reported 

that enzymatic activity, when present, was in the cytoplasm of epithelial " 

cells and was absent from nuclei, connective tissue, and muscle. 3-

Galactosidase activity is much higher in the intestine of the fetus and 

suckling animal (3, 47, 55, 59, 76, 121, 187). This presence of high 

activity coincides with the time that milk forms the major or entire 

nutrient source for the animal. 

3-Qalactosidase in humans 

3-Galactosidase is present in adult human saliva (24) and intestines 

(14, 58, 76, 88, 125). Some humans have low 3-galactosidase activity in 

their intestines which results in lactose intolerance (160). The incidence 

of low 3-galactosidase activity among humans is much higher in Negroes, 

American Indians, Greek Cyriots, and Asians (160). 

S-Galactosidase in microorganisms 

Because of the extensive work with 3-galactosidase, it will not be 

possible or practical to cite all studies conducted or even the micro­

organisms investigated. Consequently, only some of the more pertinent and 

recent investigations on some of the more common microorganisms of interest 

in the dairy industry will be considered. Characteristics of the 
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3-galactosldase systems of these microorganisms will be compared with 

results obtained in this investigation on 3-galactosidase of jP. shermanll. 

Investigations on the following microorganisms are of particular interest: 

E. coll (35, 36, 44, 54, 75, 97, 100, 106, 109, 124, 188, 194); Aerobacter 

aerogenes (150); Klebsiella aerogenes (138); Streptococcus lactls (26, 27, 

136, 179, 180); thermophllus (117); Lactobacillus (84, 117, 128); 

Staphylococcus aureus [phospho-3-galactohydrolase] (45, 93, 112, 132); 

Bacillus (7, 103, 159); Aeromonas formlcans (158); Streptococcus faecium 

(17); Pseudomonas aeruginosa (157); Paracolobactrum aerogenoldes (5); 

Shigella (29, 152, 163); Salmonella (165, 166); Alcallgenes faecalis (73); 

Corynebacterium simplex (11); Dlplococcus pneumoniae (87); Pneumococcus 

(66); Neisseria (43); Aspergillus (72, 134, 190); Saccharomyces (13, 22, 

48, 49, 70, 181, 199); Fabospora fragills (65); and Neurospora (102, 104, 

108). Feniksova et al. (65) and Estienne et al. (64) investigated many 

yeast and mold cultures for 3-galactosidase activity. McKay et al. (118) 

recently reviewed lactose utilization by lactic acid bacteria. 

3-Galactosldase in Proplonibacterlum Wiâniewskl (202) separated 

3-galactosidase of shermanll and Proplonibacterlum arabinosum on a 

diethylaminoethyl-cellulose column in the Cl~ form using stepwise ionic 

strength elution at constant pH 7.0. He did not characterize the enzyme. 

Characterization of 3-Galactosldase 

3-Galactosidase from different microbial species is not Identical, 

but possesses unique chemical, physical, and immunological properties (5, 

29, 49, 70, 100, 103, 128, 144, 157, 158, 159). 
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Purification of B-galactosldase 

g-Galactosidase has been purified and characterized from the fol­

lowing microbial sources: coll (35, 36, 44, 86, 100, 106, 124, 177, 

194); K. aerogenes (138); S. lactis (113, 115, 116); Bacillus (7, 103, 

159); Ale, faecalis (73); faeclum (17); Pseudomonas aeruginosa (157); 

D. pneumoniae (87); Saccharomyces (13, 22, 49, 181); Aer. formicans (158); 

and Neurospora (104, 108). 

The initial step in purification is usually fractionation with 

ammonium sulfate (7, 13, 36, 44, 86, 100, 106, 115, 194). g-Galactosidase 

also has been precipitated with acetone (7, 49), alcohol (100, 104, 181, 

190, 194), and trichloroacetic acid (104). The enzyme is further separated 

on Sephadex (8, 13, 44, 115, 116, 157, 158) and diethylaminoethyl cellulose 

columns (8, 86, 158, 202). As the purification progresses, the enzyme 

becomes increasingly labile (13, 115). Adding 3 to 11% ammonium sulfate 

partially stabilizes the purified enzyme. 

Permease Systems 

Because 3-galactosidase is an intracellular enzyme, it is necessary 

for the substrate to enter the cell before it can be metabolized. Trans­

portation into the cell is accomplished by functional systems called 

permeases. Diffusion-like entry of galactosides into cells is 100 to 

1,000 times slower than uptake by a permease (81). 

Many workers (11, 17, 26, 29, 48, 81, 99, 103, 106, 117, 153) have 

observed much greater 3-galactosidase activity in bacterial cells after 

the cells have had their cell walls and membranes ruptured or removed by 
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solvents or mechanical treatments. Their observations showed that the 

cell wall and membrane offers a barrier to entry of certain substances 

into the cell. 

Deere (53), 1939, was one of the first workers to recognize that a 

permeability barrier might be the reason a specific substrate is not uti­

lized by a microbial cell. He observed that jE. coli-mutabile, which did 

not ferment lactose, contained normal amounts of 3-galactosldase. After 

cell injury, this strain was capable of fermenting lactose. One of his 

interpretations was that failure to utilize lactose was due to imper­

meability of the cell to the sugar. In 1949, Doudoroff et al. (60) ob­

served that a strain of coli did not utilize glucose, but did utilize 

maltose. Because glucose was released intracellularly and subsequently 

metabolized, they realized that permeation of glucose was blocked. Because 

maltose is a larger molecule than glucose, they suspected the permeation 

system was stereospecific. The fact that some cells accumulated certain 

nitriles against a concentration gradient demonstrated that there was not 

free passage of substances through the cell membrane (33, 110). Doudoroff 

et al. (60), 1949, and Davis (50), 1956, were among the first to emphasize 

the occurrence of selective permeability. 

Cohen and Rickenberg (32), 1955, and Rickenberg et al. (154), 1956, 

described the galactoside permease system of coli. In 1957, Cohen and 

Monod (33) reviewed the literature on permeases for the transportation of 

organic compounds into bacterial cells. They recommended that these selec­

tive stereospecific systems be called permease systems and proposed a 

simple model describing the essential features of these systems. At that 

time, eight different permeases had been Identified in coll. They 
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predicted that as many as 50 different permeases for organic substrates 

might exist in this microorganism. 

Further elucidation of permease systems and components was accom­

plished by Kepes (94, 95), Koch (98), Fox and Kennedy (68), Scarborough 

et al. (164), and Egan and Morse (61, 62, 63). For additional information 

on permease systems, other articles may be consulted (25, 96). 

The phosphotransferase systems 

Kundig et al. (101) discovered a unique permease system in coli 

K235. The system, which they called the phosphotransferase system, uti­

lizes phosphoenolpyruvate (PEP) to phosphorylate a heat-stable, histidine-

containing protein, which they called HPr. The phosphate is transferred 

to specific carbohydrates while they are being transported through the cell 

membrane. This phosphotransferase system was capable of transporting N-

acetylmannosamine, glucose, mannose, glucosamine, mannosamine, N-

acetylglucosamine, and N-glycolylmannosamine. Carbohydrates, if phos­

phorylated in a different reaction, are not transported by this permease 

but must be phosphorylated during passage through the cell membrane (78, 

93). In initial studies, the authors also detected the phosphotransferase 

system in A. aerogenes, Aerobacter cloacae, and Lactobacillus arablnosus. 

Similar, but apparently not identical, phosphotransferase systems have 

been detected and investigated in Bacillus subtilis, ]L. arabinosus» 

Salmonella typhimurium, A. aerogenes, Staphylococcus aureus, and lactis 

(6, 92). 

Carbohydrates are accumulated intracellularly as phosphorylated deriv­

atives by microorganisms possessing the phosphotransferase system (78, 79, 
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101, 105, 119). Pleiotroplc car" mutants, which simultaneously lose the 

ability to utilize several carbohydrates, are a result of mutations re­

sulting in loss of function of phosphotransferase system components (18, 

61, 62, 63, 80, 132, 167, 168, 175, 176). Carbohydrates which depend on 

this permease system are not transported into the car" mutant cell. 

Hydrolysis of galactosides by S^, aureus Several workers (45, 61, 

93, 112) observed that while untreated whole cells of Staphylococcus aureus 

possessed "3-galactosidase" activity, activity was not observed in solvent-

treated, physically disrupted, or lyophilized cells. Kennedy and 

Scarborough (93) observed that acetone-treated Staphylococcus aureus cells 

possessed "3-galactosidase" activity when PEP was added to the assay sys­

tem. They postulated that carbohydrates were transported into the cell by 

a phosphotransferase system similar to the system in coli K235, des­

cribed by Kundig et al. (101). Staphylococcus aureus transports at least 

10 carbohydrates (lactose, maltose, sucrose, galactose, mannitol, fructose, 

trehalose, mannose, melizitose, and ribose) by the phosphotransferase sys­

tem (78). 

Egan and Morse (61) concluded that the car" mutation in Staphylococcus 

aureus NTCC 8511 was the result of a single gene mutation affecting the 

phosphotransferase system. Use of radioactive carbohydrates demonstrated 

the inability of the car" phenotype to transport the substrate into the 

cell, while the car"*" phenotype did accumulate radioactive carbohydrate. 

Egan and Morse (63) demonstrated that carbohydrates were accumulated inside 

the cells as derivatives. Hengstenberg et al. (78) determined that the 

derivatives accumulated by Staphylococcus aureus were phosphorylated 
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carbohydrates. Hengstenberg et al. (78) concluded that Staphylococcus 

aureus cannot hydrolyze lactose or ONPG, but possesses an enzyme which 

hydrolyzes the phosphorylated derivatives of these compounds that are 

formed during passage through the cell membrane. Subsequent work also 

demonstrated the accumulation of phosphorylated derivatives by 

Staphylococcus aureus (79, 105). Hengstenberg et al. (79) verified that 

car" mutants did not make phosphorylated derivatives. Hengstenberg and 

Morse (77) demonstrated that crude staphylococcal g-galactosidase hy-

drolyzed o-nitrophenyl-B-D-galactopyranoside-6-phosphate (0NPG-6P0^). 

Before the phosphotransferase system was recognized in Staphylococcus 

aureus, workers were measuring phospho-3-galactohydrolase activity when 

they thought they were measuring 3-galactosidase activity. The substrate 

was phosphorylated during passage through the cell membrane, and hy-

drolyzed by phospho-3-galactohydrolase. No "G-galactosidase" activity was 

evident with solvent-treated or mechanically disrupted cells because the 

source of PEP was eliminated when the membrane was disrupted. When ex­

ternal PEP was added (93), "3-galactosidase" activity was present. 

While the phosphotransferase system is utilized by Staphylococcus 

aureus (78, 93) and lactis (119) to transport lactose, and by coli 

to transport monosaccharides (101), coli does not use this system to 

transport lactose (93). 

Constitutive and Adaptive Systems 

3-Galactosidase enzyme may be either constitutive or adaptive. In a 

constitutive system, the enzyme is always produced whether an inducer is 

present in the growth medium or not. Most adaptive enzymes are produced 
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In small amounts in the absence of an inducer (37). When an inducer is 

present, however, up to a 10,000-fold increase in enzyme activity is 

observed (5, 90). 

Inducers of S-galactosidase 

To be an inducer, a substance must possess an intact galactoside 

ring (131). Rotman (161). however, observed that borate induced an E. 

coli culture. He suspected that the borate affected transcription. 

Borate did not induce G-galactosidase synthesis by lactis (26). 

Lactose, the natural substrate for p-galactosidase, will induce most 

adaptive 0-galactosidase systems (17, 19, 26, 29, 49, 99, 102, 103, 109, 

138, 179, 199, 202). With Staphylococcus aureus, however. Greaser (45) 

found that galactose was a much better inducer than lactose. McClatchy 

and Rosenblum (112) observed that galactose and lactose were efficient 

inducers of 3-galactosidase by Staphylococcus aureus but that the thio-

galactosides were not inducers. Morse et al. (132) reported that galactose-

6-phosphate was a better inducer for Staphylococcus aureus than galactose 

was. Because Staphylococcus aureus has a phosphotransferase system and a 

phospho-3-galactohydrolase instead of a 3-galactosidase, it is not sur­

prising that the induction pattern is different than with microorganisms 

possessing 3-galactosidase. Galactose also was a better inducer than 

lactose for lactis C2F, which possesses a phosphotransferase system 

(119). 

Galactose also was a good inducer for Bacillus megaterium (103), 

faecium (17), coli (99, 109), Saccharomyces fragilis (49), and Neurospora 

(102). Galactose did not induce strains of Shigella sonnei (29), coli 
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(29), lactls (26, 27), and Sac, fragllls (198). 

Compounds do not have to be utilized by the microorganism to induce 

enzyme synthesis (109, 127, 131). Thiogalactosides, which are not uti-

lizable, induce many strains (26, 29, 37, 56, 81, 103, 127, 133, 149). 

Thiogalactosides did not induce Staphylococcus aureus (112) or faeclum 

(17). 

Inhibitors of B-galactosldase 

Although lactose Is an Inducer, it also may be inhibitory. Inhibi­

tion has been attributed to accumulation of metabolites (56, 85). 

Fenlksova et al. (65) reported that lactose inhibited 3-galactosldase 

production by Sac, fragllls. Hofsten (85) found that the growth of 

coll strains possessing high 3-galactosldase activity was temporarily in­

hibited by the addition of lactose to the growth medium. A strain of 

coll which produced very large amounts of 3-galactosidase (hyper strain) 

was remarkably sensitive to lactose (135). Denes (56) observed that 

lactose inhibited synthesis of 3-galactosidase by coll cells which had 

previously been Induced by a thlogalactoside. Citti et al. (26) found 

slight repression of 3-galactosldase by galactose and marked repression 

by glucose. 

Glucose inhibits 3-galactosldase synthesis and activity (6, 26, 37, 

38, 39, 120, 123, 133, 185, 201). 

o-Nltrophenyl-3-D-Galactopyranoslde Assay Method 

Lederberg (106) used the chromogenic substrate, ONPG, to measure 3-

galactosidase activity. The 3-llnkage of this galactoside is hydrolyzad 
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by 3-galactosidase. The hydrolysis products are galactose and ONP, a 

colored compound which has maximum absorbance at 420 nm. By measuring 

absorbance at 420 nm, the pmoles of ONP liberated can be calculated. This 

method is much simpler and faster than other procedures (22, 31, 36, 42, 

49, 54, 75, 91, 136, 145, 148, 199). Cohn and Monod (36) demonstrated that 

lactose and ONPG were hydrolyzed by the same enzyme. The affinity of the 

enzyme, however, for the substrate and the rate of the hydrolysis reaction 

is different for the two substrates (36, 45, 102, 104, 106, 179, 180, 188, 

192). These workers observed that microbial g-galactosidase was more 

active toward ONPG than toward lactose (36, 102, 104, 106, 179, 180, 188, 

192). 

Optimum assay temperature 

The assay temperature for optimum 3-galactosidase activity is often 

considerably above the optimum growth temperature of the microorganism. 

McKay (117) found 50 C to be the optimum assay temperature for untreated 

cells of Lactobacillus helveticus, Lactobacillus lactis, and Lactobacillus 

acidophilus. using ONPG. Untreated cells of L^. arabinosus, Lactobacillus 

casei, and lactis had greater 3-galactosidase activity at 37 than at 50 

C. Citti et al. (26) reported that _S. lactis 7962 untreated cells had 

optimum activity with ONPG at 50 C, and toluene-acetone treated cells had 

optimum activity at 40 C. Enzyme from subtilis also had optimum activ­

ity with ONPG at 50 C (7). 

Escherichia coli possessed greater lactose hydrolytic activity at 46 

C than at 36 C. There was no hydrolytic activity at 56 C (97). Wierzbicki 

and Kosikowski (200) found that the optimum assay temperature for lactose 
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hydrolysis by mold cell-free extracts was 50 C, and the optimum for yeast 

and bacteria was 40 to 50 C. 3-Galactosidase from Sac, fragilis cell-free 

extract had optimum activity on lactose at 33 C (181). Studies by 

Pomeranz et al. (145) revealed an optimum assay temperature of 50 C for a 

fungal and a bacterial 6-galactosidase, and 37 C for a yeast and a bacte­

rial (^. coli) B-galactosidase for hydrolyzing lactose. 

Optimum pH 

The optimum pH is dependent upon the ionic environment, and is usually 

near neutrality for bacterial 8-galactosidase. Reithel and Kim (148) ob­

served that purified g-galactosidase from coli ML 308 and K-12 had 

maximum hydrolyzing ability on ONPG at pH 6.8 when the assay system con-

+ I 1 + 
tained 4 uM Na and 2 i# Mg ions. When only Na ions were added (4 nM), 

the optimum pH was 7.4. Lederberg (106) reported a pH optimum of 7.3 for 

an extract of E. coli K-12 in sodium phosphate buffer. The pH optimum for 

intact cells was slightly lower. Kuby and Lardy (100) observed that, with 

0.14 M Na"*" ions in the assay system, maximum enzyme activity was obtained 

between pH 7.2 and 7.3 with purified enzyme from JE. coli K-12. Wallenfels 

et al. (194) reported an optimum pH of 7.3 with purified B-galactosidase 

of E. coli ML 309. Knopfmacher and Salle (97) obtained optimal lactose 

hydrolysis between pH 7.0 and 7.5 with untreated coll cells. 

Wallenfels and Malhotra (190) summarized the results of studies on the 

effect of pH on B-galactosidase activity of E. coli. Buffers, activating 

ions, and assay temperatures were reported. Optimum activity occurred from 

pH 6.6 to pH 7.5. 

The optimum pH for cell-free extracts of S. lactis (26), subtilis 
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(7), and Paracolobactrtun aerogenoides (5) was 7.0. McKay (117) observed 

that Ij. helvetlcus cell-free extract had maximum activity at pH 6.6. Op­

timum 3-galactosidase activity with enzyme from D. pneumoniae occurred in 

the pH range 6.3 to 6.5 (87). Landman (103) reported that cell-free ex­

tract of JB. megaterium had a pH optimum of 7.7. He used the continuous 

method to measure ONPG hydrolysis, however. He was measuring the optimum 

pH of the colored tautomer of o-nitrophenol and not the optimum pH for 

enzyme activity (7). 

The pH for optimum g-galactosidase activity with toluene-acetone 

treated cells and cell-free extract may be different from the optimum for 

untreated cells, because pH may affect the rate of transport of substrate 

into the cell, which is often the rate-limiting step (25, 33, 49, 50, 62, 

98). Desai and Goldner (57) observed that maximum uptake of thiomethyl-3-

D-galactoside by lactis occurred at pH 3.6 to 4.0, while the maximum g-

galactosidase activity occurred at pH 7.0. 

Yeasts and molds, which grow at low pH, have a lower pH for optimum 

activity. The optimum pH for many mold g-galactosidases lies between 3.0 

and 5.5, while the optimum pH for most yeast 3-galactosidase is between 5.0 

and 7.0 (65, 104, 181, 198, 200). 

Effect of buffer 

Because the enzyme from different sources is different, one buffer 

would not be expected to give optimum activity with enzyme from all sources. 

Sodium phosphate gave higher 3-galactosidase activity than potassium phos­

phate with toluene-acetone treated cells of lactis 7962 (26) and with 

cell-free extracts from IJ. helveticus and Paracolobactrum aerogenoides (5). 
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Anema (7) obseirved that the two buffers were equivalent with 3-galacto-

sidase in cell-free extract from JB. subtilis. 

Kuby and Lardy (100) found that 3-galactosidase from E. coli K-12 was 

almost completely inactivated by tris-(hydroxymethyl)-aminomethane (tris) as 

the phosphate unless Na^ ions were present. Citti et al. (26) reported 

that tris was a poor buffer for S^. lactis 7962 toluene-acetone treated 

cells, and that sodium chloride and, particularly, sodium phosphate buffer 

added to tris partially restored g-galactosidase activity. Stârka (172) 

observed that the inhibitory effect of tris-HCl on coli 6-galactosidase 

was reversed by phosphate ions. Purified JB. megaterium 3-galactosidase 

possessed high activity in tris-sodium chloride buffer (103). Rickenberg 

(151) reported that tris-sodium chloride buffer was equivalent to sodium 

phosphate buffer with coli cell-free extract. Landman (103) stated 

that the high activity of purified dialyzed megaterium enzyme in tris-

sodium chloride buffer strongly suggested that 3-galactosidase did not 

require phosphate for its activity. Since phosphate ions reverse the in­

hibitory effect of tris buffer (172), it is possible that Na^ ions might 

do the same. This would explain the acceptability of tris-sodium chloride 

buffer. Caputto et al. (22) attributed activation by phosphate during 

assay of Sac, fragills 3-galactosidase to removal of inhibitory Zn ions. 

Rohlfing and Crawford (158) observed that 0.5 M sodium or potassium 

phosphate buffer Increased the thermal stability of 3-galactosldase for 

Aer. formicans and coll when suspended in 20 nM tris-thloglycolate 

buffer (pH 7.7) which contained 20 MgCl^. 
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Effect of ions 

Manganous ions increase the activity of B-galactosidase from many 

sources (22, 100, 103, 148, 194, 198). Buecher and Brock (17) found that 

3-galactosidase of faecium became inactivated in cell-free extracts 

unless Mn ions were present. Cohn (35) reported that the B-galactosidase 

^ o— 
of E. coli does not show Mn ion activation unless it is first treated 

with a complexing agent, such as versene. Cohn and Monod (36) found that 

0.02 M MnClg caused a 62% inhibition of 3-galactosidase from E. coli ML. 

This anomaly is explained by work of Rickenberg (151) who found that Mn^ 

ions increased 3-galactosidase activity at low concentrations, but was 

inhibitory at 0.01 M and above. Manganese chloride stabilizes 3-galacto­

sidase above 50 C (5, 151, 197). 

Rickenberg (151) observed that g-galactosidase in_E. coli cell-free 

extract lost activity when diluted to protein concentrations below 100 

j I I j ^ 
yg/ml unless protected by Mn , Mg , or Na ions. He did not rule out 

the possibility that the phosphate or chloride anion might be responsible 

for stabilizing 3-galactosidase. A variety of extraneous proteins also 

protected the enzyme against loss of activity. The enzyme was completely 

inactivated by prolonged dialysis against water. The presence during 

dialysis of Mn^, Mg^, or Na"*" ions, as the phosphate or chloride salt, 

protected the enzyme. Corbett and Catlin (43) also observed that 3-galacto­

sidase of Neisseria was unstable to dialysis against water and to protein 

concentrations below 100 yg/ml. Two hundred micrograms albumin per milli­

liter stabilized the enzyme. Manganese chloride also stabilized, but not 

as effectively as albumin. Lederberg (106) did not detect an effect by 

divalent cations or by anions (chloride, sulfate, nitrate, acetate, and 
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phosphate) with g-galactosidase from E. coll. 

4* I I 
Reithel and Kim (148) observed that both Na and Mg ions must be 

present in the ONPG assay to obtain maximum activity with JE. coli 3-

galactosidase. Sodium ions resulted in greater stimulation of g-galacto-

sidase activity than ions when added to ONPG assay systems containing 

3-galactosidase from E. coli (36, 100, 106), and Aer. formicans (158). 

Potassium ions gave greater stimulation than Na ions when lactose was 

being hydrolyzed (36, 49, 91, 148). Activity of D. pneumoniae 3-galacto-

sidase was not affected by adding Na^, K*", or Mn^ ions to the ONPG assay 

system (87). 

Effect of storage 

The 3-galactosidase enzyme is very stable to several storage methods. 

Clausen and Nakamura (29) observed that 3-galactosidase activity of 

Shigella sonnei cells decreased only slightly when stored 7 days at 40 C. 

Escherichia coli cell suspensions decreased only slightly in 3-galacto-

sidase activity during several months storage at 5 C (97). Kuby and 

Lardy (100) stored dried ]E. coli K-12 cells, in a vacuum desiccator over 

PgOg, in the cold room for several months with only a small loss in 3-

galactosidase activity. 

Lyophilized Neurospora mycelial mats could be stored in a vacuum 

desiccator for several weeks without loss of 3-galactosidase activity 

(104). 

3-Galactosidase activity in cell-free extracts also is very stable 

to storage. Lederberg (106) reported that coll enzyme activity was 

retained during several months of refrigerated storage. 
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3-6alactosldase also is very stable to frozen storage (87). Puri­

fied enzyme is much more stable than crude extract. Landman (103) reported 

that crude lysozyme lysates of megaterium lost 49% of their activity 

during 12-day storage at -20 C. He attributed the loss of enzyme activity 

to proteinase activity. On the other hand, a partially purified prepara­

tion did not lose activity when stored 60 days at -20 C. Anema (7) also 

found that purification increased the storage stability of subtilis 

3-galactosldase. Crude extract was stable for only 3 weeks at -20 C, 

while purified extract could be stored 3 months without loss of activity. 

Presence of Sulfhydryl Groups 

3-Galactosidase contains free sulfhydryl groups (33, 44, 87, 189, 

190, 198) which are important for enzyme activity. Some of the compounds 

which react with sulfhydryl groups are N-ethylmaleimide (155), iodoacetate 

(44, 106, 198), p-mercuribenzoate (49, 155), p-chloromercuribenzoate (33, 

190), iodoacetamide (190), iodine (97), and heavy metals (87, 190). When 

a sulfhydryl group reacts with one of these compounds, or other reactive 

compounds, that active site no longer possesses enzymatic activity. Com­

pounds containing sulfhydryl groups, as reduced glutathione and cysteine 

often prevent or reduce inhibition by the sulfhydryl group blocking 

reagents (33, 155). Partial protection against inhibition by p-chloro­

mercuribenzoate was provided to lactis 7962 g-galactosidase by 0.85 M 

ammonium sulfate (114) and to coli ML 309 3-galactosidase by 0.05 M 

sodium chloride (190). For an extensive discussion of sulfhydryl groups 

in enzymes, Boyer (15) should be consulted. 
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Propionlbacteria 

For a comprehensive discussion of the significance and usage of 

propionibacteria in the manufacture of Swiss cheese, Swiss Cheese 

Varieties (147) should be consulted. Their growth and metabolism, as 

has been mentioned, is covered in the review by Hettinga and Reinbold 

(82). 
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MATERIALS AND METHODS 

Cultures 

Strains of propionibacteria were obtained from the culture collection 

of the Department of Food Technology, Iowa State University. Original 

sources were listed by Malik et al. (122). Streptococcus lactls C2F was 

received from the Department of Food Science and Industries, University 

of Minnesota, St. Paul. The other lactis, the coll B, and Proteus 

vulgaris cultures were obtained from the Department of Microbiology, 

Oregon State University, Corvallis. The lac" mutanta, lactis F22 and 

G2, were obtained by treating lactis C2F with N-methyl-N-nitro-N-

nitrosoguanidine (117). Escherichia coli 11775 was obtained from the 

American Type Culture Collection, Washington, D.C. 

Media 

Propionibacteria were propagated in sodium lactate broth, the compo­

sition of which is given in the Appendix. When lactose, glucose, and 

galactose media were used for growing propionibacteria, these sugars were 

substituted for sodium lactate in sodium lactate broth. Purified sodium 

lactate was used in the medium for propagation of stock cultures and for 

growing cells for whole cell studies. Technical grade sodium lactate was 

used in the medium for growing cells used to prepare cell-free extract. 

Purified sodium lactate was produced by crystallizing and hydrolyzing 

lactide. The procedure is described in the Appendix. 

Streptococcus lactis and coli cultures were grown in the lactose 
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broth used by Citti et al. (26). Composition of this medium is given in 

the Appendix. Sufficient filter sterilized 15% lactose solution was added 

to the basal medium to bring the lactose concentration to 1%. 

Unless stated otherwise, the following procedure was used for growing 

all propionibacteria to produce cells for enzyme assay: 500 ml of medium 

were placed in a 1,000-ml Erlenmeyer flask closed by four layers of alu­

minum foil. A 1.4% inoculation was used. 

Source of Reagents 

All reagents were A grade except N-ethylmaleimide which was B grade. 

The ONPG, dithiothreitol, a-iodoacetamide, N-ethyl-maleimide, and p-

chloromercuribenzoate were obtained from Calbiochem, Los Angeles, Califor­

nia. Reduced glutathione was acquired from Mann Research Laboratories, 

Inc., New York, New York, The 0NPG-6P0^ was obtained from Research Plus 

Laboratories, Inc., Denville, New Jersey, and the Sephadex G-lOO and Blue 

Dextran 2000 were purchased from Pharamacia Fine Chemicals, Inc., 

Piscataway, New Jersey. 

Propagation of Cultures 

All cultures were transferred daily on at least three consecutive 

days before use. Propionibacteria were inoculated at the rate of 7.1% 

and incubated for 24 to 28 hr at 32 C. Lactic cultures were transferred 

in reconstituted 11% nonfat dry milk (Matrix medium, Galloway-West, Fond 

Du Lac, Wisconsin) using a 1% inoculum, and were incubated at 32 C until 

coagulation. They were then transferred twice in lactose broth before 
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final propagation in lactose broth to produce a cell crop. Streptococcus 

lactis C2F was streaked on lactose agar. Individual colonies were picked 

and inoculated into tubes of sterile reconstituted nonfat dry milk, which 

were then incubated at 32 C. The milk which coagulated first was then 

inoculated into broth. This culture was transferred in broth once before 

being used to inoculate lactose broth to produce a cell crop. The purpose 

of transferring in lactose broth was to dilute out milk solids which would 

interfere with determining the mg dry cells/ml. Trypticase soy broth 

(Baltimore Biological Laboratory, Baltimore, Maryland) was used for routine 

propagation of lac" mutants (^. lactis F22 and G2) and for Proteus 

vulgaris. These strains were inoculated into lactose broth to produce a 

cell crop. Escherichia coli cultures were routinely grown in lactose 

broth; the same medium was used to propagate cells for harvesting. 

Buffer Preparation 

Sodium and potassium phosphate buffers were prepared by mixing 0.2 M 

stock solutions of the monobasic and dibasic salts (71). Tris buffer was 

prepared by adding HCl to tris until the desired pH was obtained. The 

final concentration of all buffers was 0.05 M. 

Whole Cell Studies 

Harvesting of cells 

After the desired incubation period, the broth culture was cooled in 

an ice-water bath. The culture was dispensed into three 250-ml polycar­

bonate centrifuge bottles and was centrifuged at 6870 ̂  for 20 min in a 
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Sorvall RC2-B refrigerated centrifuge (Ivan Sorvall, Inc., Norwalk, 

Connecticut, GSA rotor) at 4+1 C. This centrifuge was used exclusively 

in this study. The supernatant liquid was decanted, and the compacted 

cell mass in each bottle was dispersed in 15 ml of sodium phosphate buffer 

by shaking on a Kahn shaker (Burton Manufacturing Company, Los Angeles, 

California, Model 1430). After the cells were resuspended, the contents 

of all bottles were pooled. The first rinse was decanted after centrifu-

gation. Approximately 45 ml of buffer were added to the pellet and the 

cells were again dispersed. After resuspension, an additional 120 ml of 

buffer were added to the bottle. Following centrifugation, the superna­

tant (second rinsing) was decanted, and the cells were resuspended in 5 ml 

of buffer to yield a lOOX cell suspension. 

Determination of dry cell weight 

The milligrams of dry cells used in a 0-galactosidase assay were cal­

culated from the weight of dry cells per milliliter of the lOOX cell sus­

pension and the specific dilution used. The dry cell weight per milli­

liter of the lOOX cell suspension was determined in duplicate by adding 1 

ml of lOOX cell suspension to an aluminum planchet (17 X 60 mm). The 

planchets were previously heated at 100 C until constant weight was 

attained on two successive weighings made after 24 and 48 hr. The planchets 

were provided with covers fabricated from aluminum foil which extended 

over the side of the dish by approximately 5 mm. After the sample was 

added, the lip of the cover was crumpled over the top of the aluminum 

planchet to hold the cover in place. The samples were air dried at 100 C, 

cooled for 30 min in a glass desiccator containing anhydrous CaClg, and 
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weighed every day until two constant values were obtained. Weighings were 

performed on a Mettler balance (Mettler Instrument Corp., Hlghtstown, New 

Jersey, Model B5H26). One milliliter of the suspension buffer was dried 

to determine the buffer solids weight. This value was used for correcting 

the weight of the cells per milliliter of the lOOX suspension. 

B-Galactosidase assay procedure using whole cells 

Lederberg's assay procedure (106), as described by Cittl et al. (26), 

was used to determine g-galactosidase activity. One milliliter each of 

cell suspension was added to a series of 20 X 125 mm screw-capped test 

tubes placed in an ice water bath. Four milliliters of 5 nM ONPG were 

added to each tube; the tubes were then transferred to a water bath held 

at the desired temperature. After the required incubation period, the 

enzyme reaction was stopped by placing the tubes in an ice water bath, 

and adding 5 ml cold (3.3 C) 0.5 M sodium carbonate to each tube. Whole 

cells and debris were removed by centrifuging in 50-ml polycarbonate cen­

trifuge tubes at 9,750 ̂  for 12 min using a SS-34 rotor. Absorbance of 

the supernatant was determined at 420 nm using a Beckman DU spectrophoto­

meter (Beckman Instruments, Inc., Fullerton, California) with a tungsten 

lamp. Pyrex cuvettes with a 1-cm light path were used. All absorbance 

measurements were made with this equipment. A g-galactosldase assay con­

trol and a boiled-cell control also were included. The g-galactosidase 

assay control contained 1 ml of sodium phosphate buffer instead of 1 ml of 

cell suspension. One milliliter of cell suspension, held in boiling water 

for 3 min, was used for the boiled control. The spectrophotometer was 

adjusted to zero absorbance with either the g-galactosidase assay control 
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or with distilled water. The absorbance of the boiled control was sub­

tracted from sample absorbance to obtain the corrected value. Duplicate 

assays were performed unless stated otherwise. 

Toluene-acetone treatment Whole cells were subjected to toluene-

acetone treatment by adding 4 ml of cell suspension and 0.2 ml of a 1:9 

toluene-acetone mixture to a 20 X 125 mm screw-capped test tube and mixing 

on a Vortex Genie Laboratory mixer (Fisher Scientific by Scientific Indus­

tries, Springfield, Massachusetts) at room temperature for 5 min. One 

milliliter of this treated cell suspension was then used for the sample in 

an enzyme assay. 

Preparation of o-nitrophenol standard curve 

A stock solution of ONP containing 40 Pg/ml was prepared by dissolving 

20 mg ONP in 10 ml ethyl alcohol and then diluting to 500 ml with 0.05 M 

sodium carbonate buffer (pH 10.0). Absorbance of dilutions of this stock 

solution was determined at 420 nm. All points fell on or very near a 

straight line which went through the origin. The concentration of ONP 

(umoles/ml) necessary to Increase the absorbance by 0.001 was close to 

the value of 0.238 determined by McFeters et al. (115). 

Calculation of 3-galactosidase activity 

Since the final volume of solution in the assay system was 10 ml, the 

total number of micromoles of ONP in the supernatant for each 0.001 ab­

sorbance unit was 2.38. Multiplying absorbance by 2.38 gives the number 

of micromoles of ONP liberated during the assay. One unit of enzyme ac­

tivity is equivalent to 1 y mole of ONP liberated per mg dry cells per 
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minute Incubation time (26; 67, p. 6). Since there was usually less than 

1 unit of activity with the proplonibacteria used in this investigation, 

results are presented as the mllllunlts activity which are calculated as 

follows : 

absorbance X 2.38 X 1,000 
Hilllunits enzyme activity = 

mg dry cells X min Incubation 

8-Galactosidase activity of cultures 

Ten strains of shermanll and 10 strains of 2» freudenreichli were 

purified by streaking on sodium lactate agar. Plates were Incubated 4 

days at 32 C in a candle oats jar (182). Cells from an individual colony 

of each strain were inoculated into sodium lactate broth. g-Galactosldase 

activity of these strains was determined using the procedures as described. 

The dilution of cells for an enzyme assay depended upon amount of growth, 

activity of the cells, and assay conditions. For assay of these 20 pro­

plonibacteria strains, the cell crop was diluted to a lOX concentration. 

That is, the cells were 10 times more concentrated in the buffer than they 

were in the growth medium. The assay systems contained from 0.58 to 6.05 

mg dry cells/ml. 

The same procedure was used for determining the &-galactosldase ac­

tivity of the S^. lactls, E. coll, and Proteus vulgaris species. 

Effect of carbon source in growth medium on g-galactosidase activity 

Five P. shermanii strains were grown for 24 hr in seven combinations 

of carbon sources and then harvested and assayed for g-galactosidase 

activity. The carbon sources were 1% sodium lactate, 0.5% lactose, 0.5% 
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lactose +0.5% sodium lactate, 0.5% glucose, 0.5% glucose + 0.5% sodium 

lactate, 0.5% galactose, and 0.5% galactose +0.5% sodium lactate. These 

carbon sources were substituted for sodium lactate in sodium lactate broth. 

Cultures were transferred on three consecutive days in medium containing 

the same carbon source to be used for growing the cell crop. The sugars 

were filter-sterilized and were added to the medium immediately before 

Inoculation. 

Effect of lactose analogs and related sugars on B-galactosidase activity 

Propionibacterium shermanii P7 and P22 were inoculated into 1% sodium 

lactate broth and Incubated 24 hr at 32 C. Cells were centrlfuged from 

the medium in sterile 250-ml polycarbonate centrifuge bottles, and rinsed 

once with sterile sodium phosphate buffer (pH 7.0). Five milliliters of 

sterile sodium phosphate buffer were added to the cells, which were held 

on a Kahn shaker until complete cellular suspension was achieved. One-

milllliter portions were removed for determination of mg dry cells/ml. 

One milliliter was added to a sterile bottle containing 9 ml of the desired 

lactose analog (0.01 M) or sugar (0.5%). A second 1-ml aliquot was added 

to another sterile centrifuge bottle, which contained 9 ml of buffer, to 

serve as the control. The samples were incubated 6 hr at 32 C. After the 

Incubation period, the cells were centrlfuged, rinsed twice with sodium 

phosphate buffer, and then resuspended to lOX concentration in sodium 

phosphate buffer. 3-Galactosldase activity was then determined. The 

milligrams dry cells present in the assay were assumed to be 1/lOth the 

mg dry cells/ml in the lOOX cell suspension after the cells were harvested. 
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Growth curves 

As a further test to determine If g-galactosidase was inducible, 

sodium lactate- and lactose-grown cells were separately Inoculated (1%) 

into two broths. Both broths contained the ingredients of sodium lactate 

broth except for these changes: 1) one broth contained a high sodium 

lactate concentration (0.0145 M) and a low lactose concentration (0.0029 M); 

2) the other medium contained a low sodium lactate concentration (0.0029 M) 

and a high lactose concentration (0.0145 M). Growth was measured by de­

termining the absorbance of cells in the growth medium at 600 nm. A well-

mixed aliquot was removed from each flask of broth every hour for 48 hr. 

Aliquots were stored at 3.3 C, and the absorbance was determined after 

every fourth sampling period. 

Effect of temperature and pH on B-Salactosldase activity of whole cells 

g-Galactosidase activity of untreated and toluene-acetone treated 

cells of jP. shermanii P7 and P22 was determined at specific incubation 

temperatures between 32 and 65 C. Also, activity was determined at 

specific pH values between pH 6.0 and 8.9. 

Effect of age of cells on g-galactosldase activity 

Three-hundred-milliliter quantities of 1% sodium lactate broth in 

500-ml Erlenmeyer flasks, were inoculated at the rate of 2.3% with 2» 

shermanii P7. Cells from two flasks were harvested after 12 hr, and cells 

from two more flasks were harvested after 16 hr of growth. Because higher 

numbers of cells were present after 20, 24, 28, 36, 48, and 72 hr, one 

flask of medium provided sufficient cells for assays representing these 
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Incubation times. Harvested cells were stored 30-36 hr at 3.3 C before 

being assayed for g-galactosidase activity. 

Effect of incubation time on rate of ONPG hydrolysis by untreated cells 

Suspensions of untreated cells of IP. shermanii P7 and P22 were incu­

bated for time intervals ranging from 2 to 30 min during the g-galacto-

sidase assay, to determine the length of time that the hydrolysis reaction 

was linear. Single assays were performed. 

Effect of buffers on g-galactosidase activity of whole cells 

The effect of buffers on g-galactosidase activity was determined 

using 0.05 M sodium phosphate, potassium phosphate, and tris buffer. Tris 

buffer (0.05 M) was mixed with an equal volume of sodium phosphate (0.05 

M) and sodium chloride (0.05 M) to provide buffering systems that were 

0.025 M in each component of the mixture. Sodium phosphate, potassium 

phosphate, and tris buffer were used to wash portions of the cell crop. 

An aliquot of each portion of cells was diluted with the respective 

buffer, to proper cell concentration. A portion of the cells washed with 

sodium phosphate was diluted with a mixture of sodium phosphate and tris. 

A portion of the cells washed with tris buffer was diluted with a mixture 

of tris and sodium chloride. One-mllliliter samples of untreated and 

toluene-acetone treated cell suspensions were assayed with ONPG solution, 

which contained the respective buffer or buffers. 

Effect of manganese chloride on S-galactosidase activity of whole cells 

Suspensions of jP. shermanii P7 and P22 cells were assayed at 32 and 

52 C in the presence of 0.4 nM MnCl^ to determine the effect of MhClg on 
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3-galactosldase activity. Control samples did not contain MnCl^. 

Statistical evaluation of effect of manganese chloride 

on B-galactosldase activity of untreated cells 

The t test was performed using the mean difference between 3-galacto-

sldase activity of both P7 and P22 untreated cells receiving 0.4 MnClg 

in the enzyme assay and control samples which did not receive MnCl^. 

Statistical procedures from Statistical Methods (170) were used. 

Cell-Free Extract Studies 

Preparation of cell-free extract 

Five liters of sodium lactate broth, in a 6-liter Erlenmeyer flask, 

were used for growing cells for preparation of the cell-free extract. 

Cells were harvested by centrlfuging the growth medium at 27,000 in the 

continuous-flow system of the Sorvall RC2-B refrigerated centrifuge 

(4±1 C). Cells were rinsed twice with sodium phosphate buffer and then 

diluted to a lOOX cell concentration. 

Cells were disrupted with a French pressure cell in a power laboratory 

press (American Instrument Co., Inc., Silver Springs, Maryland). The 

pressure cell was chilled to 3.3 C before use. Pressure within the cell 

was a minimum of 16,000 pounds per square inch. The cell suspension was 

passed through the pressure cell two times. Unbroken cells and debris 

were removed by centrlfuging at 27,000 ̂  for 15 min at 4+1 C. The cell-

free extract contained from 7 to 21 mg protein/ml. 
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Protein determination of cell-free extract 

Protein concentration of the cell-free extract was determined by 

Dowry's procedure (111). Sodium citrate, instead of sodium or potassium 

tartrate, was used to dissolve the CuSO^'SHgO (B2). The procedure is 

given in the Appendix. 

B-Galactosidase assay procedure using cell-free extract 

The g-galactosidase assay with cell-free extract was conducted 

similarly to the procedure described for whole cells. One milliliter of 

cell-free extract was added to the assay system instead of 1 ml of cell 

suspension. Cell-free extract samples also were centrifuged. The railli-

units enzyme activity are expressed per milligram protein. 

Lyophilization of cell-free extract 

Cell-free extract was lyophilized in a Virtis Freeze Dryer (The 

Virtis Company, Inc., Gardiner, New York, Model 10-147MR-BA). Lyophilized 

cell-free extract was stored in a desiccator, with anhydrous CaCl^ as the 

desiccant, at 3.3 C. 

Reconstitution of lyophilized cell-free extract 

Propionibacterium shermanii P7 lyophilized cell-free extract was 

reconstituted by adding 2 g lyophilized cell-free extract per 100 ml 

distilled water; this amount of cell-free extract contained approxi­

mately 10 mg protein/ml. Propionibacterium shermanii P22 lyophilized 

cell-free extract was reconstituted fay adding 0.5 g lyophilized cell-free 

extract per 100 ml distilled water; this amount of cell-free extract con­

tained approximately 1.5 mg protein/ml. These quantities of cell-free 
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extracts were selected because they usually yielded absorbance readings 

between 0.100 and 0.400. 

Effect of temperature and pH on g-galactosidase activity 

of cell-free extract 

6-Galactosldase activity of cell-free extracts of P^. shermanli P7 and 

P22 was determined at specific incubation temperatures between 18 and 65 C. 

Also, activity was determined at specific pH values between 6.0 and 8.0. 

Linearity of product formation with time during 

ONPG hydrolysis by cell-free extract 

Cell-free extracts of 2» ahermanii P7 and P22 were incubated for time 

Intervals ranging from 2 to at least 20 mln during the 3-galactosidase 

assay to determine the length of time that the hydrolysis reaction was 

linear. 

Effect of buffers on g-galactosldase activity of cell-free extract 

Buffers were prepared the same as in the whole cell study. Cells 

used to prepare cell-free extract were suspended In sodium phosphate 

buffer. Consequently, some Na^ and phosphate ions were present in all 

assay systems, except when the cell-free extract was dialyzed. 

Effect of manganese chloride on g-galactosldase 

activity of cell-free extract 

Cell-free extracts of P^. shermanli P7 and P22 were assayed at 18, 28, 

32, 37, 45, and 65 C in the presence and absence of 0.4 nM MnCl^. Man­

ganese chloride was Included in the 3-galactosldase control which did not 
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contain any cell-free extract. 

Statistical evaluation of effect of manganese chloride 

on g-galactosldase activity of cell-free extract 

The t test was performed using the mean difference between g-galacto-

sldase activity of both P7 and P22 cell-free extracts receiving 0.4 mM 

MnClg in the enzyme assay and control samples which did not receive MnClg. 

Statistical procedures from Statistical Methods (170) were used. 

Dialysis of cell-free extract 

Fifty milliliters of 2» shermanll P22 cell-free extract (reconstituted 

by dissolving 0.5 g lyophlllzed cell-free extract In 50 ml redistilled 

water) were dlalyzed against 1,000 ml of redistilled water In a 1,000-ml 

glass cylinder. The dlalysate was mixed with a Teflon-coated stirring bar 

driven by a magnetic stirrer. The dlalysate was changed every 12 hr for 

five changes. When Indicated, 0.1 dM dlthlothreltol was added to the 

dlalysate. The dlalyzed cell-free extract was diluted 1:2 with redistilled 

water. The sample dlalyzed against redistilled water containing 0.1 

dlthlothreltol was diluted (1:2) with redistilled water containing 0.1 nM 

dlthlothreltol. 

Effect of ions on 3-galactosldase activity of dlalyzed cell-free extract 

Dlalyzed cell-free extract of jP. shermanll P22 was used to determine 

the effect of ions on 3-galactosldase activity. To simplify the experi­

ment, 0NP6 was made double strength (0.01 M) in distilled water. Sodium 

phosphate, potassium phosphate, ammonium phosphate, sodium chloride, 

potassium chloride, and tris were made double strength (0.10 M) also. 
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Each 1 ml of cell-free extract received 2 ml of 0.01 M ONPG solution and 

2 ml of 0.10 M buffer or salt solution. Results reported are of single 

assays. 

Effect of sulfhydryl group blocking reagents on B-galactosldase 

activity of cell-free extract 

Cell-free extract of shermanli P22 was assayed for 3-galacto-

sldase activity in the presence of the sulfhydryl group blocking reagents 

o-iodoacetamide, N-ethylmaleimide, and p-chloromercuribenzoate. The 

sulfhydryl group protector, dithiothreitol (30) also was added to samples 

receiving the sulfhydryl group reagents to see if it would reverse the 

blocking effect. Reduced glutathione, another sulfhydryl group protector, 

also was used. 

Effect of storage at 3.3 and 25 C on g-galactosldase activity of 

cell-free extract 

Because 3-galactosidase enzyme from other sources is reported to be 

a very stable enzyme, the stability of shermanii P22 6-galactosidase 

was Investigated. A sample of cell-free extract was divided into two 

portions and placed in 50-ml Erlenraeyer flasks. One portion was stored 

at 3.3 C, and the other at room temperature (25 C). g-Galactosidase 

activity of both portions was determined initially, and after 9, 24.5, 

49.5, and 74 hr. 

Effect of preservation method on g-galactosidase 

activity of cell-free extract 

To determine the effect of preservation methods on g-galactosidase 
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activity, cell-free extracts of P^. shermanii P7 and P22 were frozen at 

-20 C. Portions of cell-free extracts were lyophllized and stored at 

-20 C. g-Galactosidase activity of the fresh cell-free extracts was 

compared against preserved cell-free extracts after 32, 73, and 75 days 

of storage. 

Phospho-3-Galactohydrolase Activity of 

P^. shermanii and lactis Strains 

The presence or absence of a phospho-g-galactohydrolase in 2» 

shermanii P7 and P22 was tested by adding phosphoenolpyruvate (PEP) and 

sodium fluoride (NaF) to an assay system containing ONPG. A phosphory-

lated substrate, 0NPG-6P0^, also was used. Streptococcus lactis C2F, 

known to possess a phospho-g-galactohydrolase (119), was assayed for 

comparison, and as a control on the assay procedure. 

The P_' shermanii strains were examined for the presence of an alka­

line phosphatase by methods outlined in Standard Methods for the Examina­

tion of Dairy Products (4). 

Preparative Isolation of g-Galactosidase by Ammonium 

Sulfate Precipitation from Cell-Free Extract 

Preparative isolation of g-galactosidase from shermanii P22 cell-

free extract was accomplished by fractionating with ammonium sulfate. One 

gram of lyophilized cell-free extract was dissolved in 100 ml of redis­

tilled water. A g-galactosidase assay of this sample was performed. Ten 

grams of ammonium sulfate were added to the remaining cell-free extract 

sample. After 12-hr storage at 3.3 C, the sample was centrifuged 20 min 
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at 6870 ̂  in a 250-ml polycarbonate centrifuge bottle. The precipitate 

was suspended in 0.05 M sodium phosphate buffer, and assayed for 0-galacto-

sidase activity and protein concentration. Ammonium sulfate was added to 

the supernatant in 10-g amounts, using the procedures just described, 

until 60 g had been added. 

Sephadex Separation of Cell-Free Extract 

A Sephadex column was prepared using the procedure outlined by 

Garcia (69). Twelve and one-half grams of Sephadex G-lOO were slowly 

added to 500 ml of 0.05 M sodium phosphate buffer containing 0.1 nM 

dithiothreitol in a 1,000-ml Berzelius beaker. The buffer was gently 

stirred with a Teflon-coated stirring bar while the Sephadex was being 

added. One liter of Sephadex solution was prepared. Five milliliters of 

toluene were added to each liter to retard bacterial growth. The Sephadex 

was swollen in the eluant for 5 days with daily removal of "fines" by 

decanting, followed by gentle stirring with the magnetic stirrer. 

A non-jacketed glass column (Pharmacia Fine Chemicals, Inc., 

Piscataway, New Jersey) measuring 2.5 X 45 cm was equilibrated at room 

temperature for 48 hr with the eluant. A protein fraction, obtained by 

adding an additional 20 g ammonium sulfate to the supernatant from 100 ml 

of 1% (W/V) P22 cell-free extract which had been previously precipitated 

with 10 g ammonium sulfate, was suspended with 30 ml sodium phosphate 

buffer and then condensed to 12.5 ml by surface evaporation in dialysis 

tubing (Union Carbide Corporation, Food Products Division, 6733 West 65th 

Street, Chicago, Illinois. 60638) in front of a stream of air from a fan. 

3-Galactosidase activity of this concentrate was determined. Five milli-
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liters of concentrate, which contained 8.0 mg proteln/ml, were added to 

the column. The flow rate was 0.82 ml/mln. 

Flve-mllllllter allquots were collected by a LKB Radl Rac Fraction 

Collector Controller (Type 3403B), Distributor (Type 3402B), and Rotator 

(Type 3401B). The eluted fractions were continuously monitored at 253.7 

nm through a LKB Uvicord (Type 4701A) Optical and Control unit, and the 

per cent transmittance was transcribed on a LKB Recorder (Type 6520À). 

These Instruments are manufactured by LKB-Produkter AB, S to ckhoIm-Bromma, 

Sweden. 

The void volume of the column was determined using Blue Dextran 2000. 

Fifty milliliters of Blue Dextran, containing 4 mg/ml (69) were prepared 

by adding 200 mg of Blue Dextran to 50 ml of 0.05 M sodium phosphate 

buffer containing 0.1 nM dithiothreitol. The solution was stored for 24 

hr at 3.3 C to permit the beads to swell. A 1-ml sample of Blue Dextran 

solution was added to the column when determining the void volume. 
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RESULTS AND DISCUSSION 

Whole Cell Studies 

6-Galactosldase activity of proplonibacterla strains 

B-Galactosidase activity of untreated and toluene-acetone treated 

cells of 10 strains of shermanii is presented in Table 1. For these 

initial assays, 32 C was selected as the assay temperature because it is 

near the optimum growth temperature of propionibacteria (16). 

All 2" shermanii strains studied showed detectable activity in both 

untreated and toluene-acetone treated cell assays. Strain P12 had the 

greatest activity (15.7 milliunits) using untreated cells. Toluene-

acetone treated cells of this strain exhibited 26.6 milliunits activity. 

Toluene-acetone treatment resulted in increased activity with 2» 

shermanii strains P8, P12, P22, P51, and P59. Propionibacterlum shermanii 

P22 showed the greatest response to the solvent treatment; treated cells 

yielded greater than five times the enzyme activity found in untreated 

cells. There are many reports in the literature confirming that toluene-

acetone (or other solvent) treatment, which destroys the permeability 

barrier of the cell membrane, results in increased enzyme activity in 

microbial cell systems (11, 26, 29, 81, 99, 106, 117). Several authors 

(29, 33, 49, 50, 62, 98) have emphasized that permeability is often the 

limiting factor in substrate utilization. Koppel et al. (99), working 

with coli B cells, found a 10-fold increase in 3-galactosidase activity 

in toluene-acetone treated cells over that obtained with untreated cell 

suspensions. Citti et al. (26) observed a fivefold increase in the 

enzyme activity of lactis 7962 when treated with toluene-acetone. 
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Table 1. g-Galactosidase activity of 10 shermanii strains grown 24 hr 
at 32 C in 1% sodium lactate broth 

Milliunits enzyme activity* 
(nMoles ONP/mg dry cells/min) 

Untreated Toluene-acetone 
cells treated cells 

P. shermanii 

P7 8.2 4.4 

P8 15.0 23.6 

P12 15.7 26.6 

PIS 10.7 4.5 

P22 12.8 64.6 

P32 9.4 7.8 

P48 7.7 4.4 

P51 11.6 29.9 

P55 4.9 2.8 

P59 5.6 8.4 

* Assay conditions: 15-min incubation at 32 C, 0.05 M sodium 
phosphate buffer (pH 7.0). 

In contrast to the aforementioned propionibacterial strains, jP' 

shermanii P7, P18, P32, P48, and P55 responded negatively to solvent treat­

ment. Toluene-acetone treated cells yielded about 50% of the enzyme activ­

ity found in untreated cell suspensions. Other workers also have observed 

lowered activity or complete destruction of activity when microbial cells 

were treated with toluene-acetone (5, 26, 29, 45, 112, 117). With 
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organisms possessing the phosphotransferase system, toluene Interferes 

with the production of PEP (93, 119). With other microorganisms, the 

exact reason for such anomalous phenomenon is still unknown. It is prob­

able that there are strain differences in lability of enzymes to solvents 

like toluene and acetone. Another possibility could be the differences in 

the manner in which the specific enzyme is bound to the cell membrane or 

mesosomes, the organelles most affected by the solvent treatment. 

None of 10 2- freudenreichil strains (PI, P6, P16, P23, P30, P39, 

P40, P49, P56, P57) possessed detectable enzyme activity. These results, 

obtained by using ONPG as the substrate, correlated entirely with previous 

observations made with lactose as the substrate in broth systems. Recent 

taxonomic work by Malik et al. (122) confirmed that inability to utilize 

lactose by 2» freudenreichil was the only physiological difference between 

2" shermanii and jP. freudenreichil (16). The sensitive enzymatic assay 

results of this study support the conclusion that 2» freudenreichil falls 

to produce acid from lactose because of either absence or complete inactiv­

ity of enzymes to hydrolyze this disaccharide. It was considered that 

these microorganisms might possess a low level of enzyme activity that 

could be detected by the sensitive enzymatic assay, but which would not 

produce sufficient acid to be detected by the indicator in lactose broth. 

It is concluded that a cryptic system is not present because none of 

the 10 2" freudenreichil strains responded positively to toluene-acetone 

treatment. Three strains, PI, P30, and P40, received prolonged Incubation 

in broths containing lactose concentrations up to 6.3%. None of these 

strains produced any more acid in lactose broth than in control tubes 

which contained only basal medium. To test the stability of proploni-
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bacteria 3-galactosldase to toluene-acetone, allquots of jP. shermanll P7 

and P22 cell-free extracts which were assayed at the different Incubation 

temperatures (Fig. 11 and 12) were also assayed under the same conditions 

except that they received the same toluene-acetone treatment, including 

agitation, that whole cells received during solvent treatment (unpublished 

results). The greatest inhibition of 3-galactosidase was 54% when P7 cell-

free extract was Incubated at 65 C. There was less than 30% inhibition of 

this strain when assayed at 32, 37, 45, and 52 C. The greatest inhibition 

of P22 by toluene-acetone, 41%, also occurred at 65 C. There was less 

than 10% inhibition by toluene-acetone treatment at 28, 32, 37, and 45 C 

Incubation. There was only 19% inhibition when the assays were incubated 

at 52 C. These observations show that strain P7 3-galactosidase Is more 

labile to solvent treatment than enzyme from strain P22. The solvent has 

a detrimental effect on the enzyme Itself and the inhibition is more pro­

nounced at higher assay temperatures. 

Proplonlbacterium freudenreichii P30 did not possess detectable 

activity when toluene-acetone treated cells were assayed with 0NPG-6P0^ 

as substrate. This observation indicated that this strain does not con­

tain a phospho-B-galactohydrolase. 

In the assay system containing toluene-acetone treated cells of 2» 

freudenrelchil P30, an absorbance reading >0.100 at 420 nm was consistently 

obtained. The yellow color that would normally be associated with the 

liberation of o-nitrophenol, however, was absent. A control sample, which 

received buffer instead of 0NP6, did not have absorbance. Apparently, the 

solvent was releasing some substance from the cells which, in the presence 

of ONPG, caused absorbance at 420 nm. 
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Two strains of jP. shermanii, P7 and P22, were selected for further 

intensive study. Strain P7, which retained only 54% of the untreated 

cell enzyme activity in the solvent-treated system, was chosen at random 

to represent the group of cultures which yielded reduced enzymatic activity 

after toluene-acetone treatment. Strain P22, which exhibited the maximum 

stimulation of enzyme activity with solvent treatment, was selected to 

represent the other group. 

g-Galactosidase activity of Propionibacterium, Streptococcus, 

Escherichia, and Proteus species 

To evaluate the relative g-galactosidase activity of jP. shermanii, 

cultures of two other bacterial species, E. coli and lactis, which 

have been extensively investigated with regard to this enzyme system, were 

assayed along with the propionibacteria. Additionally, Proteus vulgaris, 

which does not utilize lactose (16), also was included in this experiment. 

These assays were conducted at 37 C. The results are summarized in Table 

2. 

Compared to the g-galactosidase activities observed with the coli 

strains, and S^, lactis 7962, the response of the two propionibacterial 

strains was low. 

Untreated cell suspensions of the P^. shermanii strains exhibited in­

creased activity at the higher assay temperature used in this experiment. 

The enzyme activity of untreated P7 cells at 37 C was almost three times 

the value obtained at 32 C; and, untreated cells of P22 exhibited greater 

than a 100% increase over the activity obtained at 32 C (Table 1). 

Increase in assay temperature was, however, detrimental to the enzyme 
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Table 2. 3-Galactosldase activity of jP. shermanii, lactis, and E. coll 
strains 

Milliunits enzyme activity* 
(nMoles ONP/mg dry cells/min) 

Strain 
Incubation time 

at 32 C 
Untreated 
cells 

Toluene-acetone 
treated cells 

P. shermanii 24 hr in sodium 
lactate broth 

P7 
P22 

23.0 
26.0 

6.0 
50.5 

S. lactis 7 hr in lactose 
broth 

7962 
C2F 

24 hr in lactose 
broth 

42.0. 
10.2^ 

130 , 
0.3^ 

F22 
G2 

NDA^ 
NDA 

0.4 
NDA 

E. coli 7 hr in lactose 
broth 

B 
11775 

358 
1,140 

1,870 
1,350 

* Assay conditions: 15-min incubation at 37 C, 0.05 M sodium 
phosphate buffer (pH 7.0), 0.4 nM MnCl^ except with S. lactis F22 and G2. 

^ 3-Galactohydrolase activity. 

^ No detectable activity. 
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activity of solvent-treated cells of strain P22. Toluene-acetone treated 

cells of 2» shermanii P22 contained 64.6 milliunits activity when assayed 

at 32 C (Table 1), but only 50.5 milliunits activity when assayed at 37 C 

(Table 2). Activity of untreated cells assayed at 37 C was more than 

double the activity obtained at 32 C incubation. The favorable effect of 

disrupting the permeability barrier of the bacterial cells is a function 

of temperature. This was borne out in a later experiment conducted to 

determine the optimum temperature of enzyme activity in untreated and 

toluene-acetone treated cell systems (Fig. 4). Citti et al. (26) found 

toluene-acetone treated lactis 7962 cells had a lower temperature for 

optimum activity, 40 C, than untreated cells, 50 C. The loss of activity 

in solvent-treated cells with increasing temperature is probably a syner­

gistic effect leading to denaturation of the enzyme per se or the altera­

tion of the cell membrane systems to which the enzyme may be attached. 

The enzyme activity of 42.0 milliunits observed for untreated cells 

of _S. lactls 7962 agrees well with the value of 50.0 milliunits reported 

by Citti et al. (26) using the same assay conditions. They, however, 

observed a much greater stimulation of activity by solvent treatment of 

the lactis cell suspension. Their value of 770 milliunits is nearly 

six times greater than the value (namely 130 milliunits) obtained in this 

experiment. 

Although untreated cells of 2" shermanii P7 and P22 possessed, respec­

tively, as much as 55 and 62% of the 0-galactosidase activity of S^. lactis 

7962, these strains fail to coagulate milk over a 7-day incubation period 

at 32 C. On the other hand, S. lactis 7962, a homofermentative micro­

organism, coagulates milk after as little as 12-hr incubation at 32 C. 
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The lactic streptococci convert some lactose Into lactic acid, a rela­

tively dissociable acid, while the heterofermentatlve proplonlbacterla 

form very little lactic acid, but convert the common metabolic Intermediate, 

pyruvate, to poorly dissociable acetic and propionic acids (Fig. 1), which 

fall to depress the pH of the milk near or past the Isoelectric point of 

casein. 

Untreated cells of lactis C2F had a "g-galactosldase" activity of 

10.2 mllllunlts. Clttl et al. (26) using an untreated cell suspension of 

lactis C2, the parent strain of lactis C2F, found a "0-galactosldase" 

activity of 15.0 mllllunlts under identical assay conditions. Although 

lactis C2 is relatively a much faster acid producer in milk as compared 

with lactis 7962 (146), Clttl et al. (26) found that this strain exhib­

ited only one-third the "g-galactosidase" activity found in the latter 

strain when measured with ONPG. Table 2 shows that S. lactis C2F possessed 

less than one-fourth as much activity as strain 7962. A possible explana­

tion for this anomaly was recently furnished by McKay et al. (119) who 

found that while S_. lactis 7962 possesses a 0-galactosidase system, S^. 

lactis C2F in reality has a phospho-g-galactohydrolase system for the uti­

lization of lactose. McKay et al. (119) concluded that _S. lactis C2F 

lacked g-galactosldase but possessed a different enzyme as a part of a 

PEP-dependent system. The presence of a phospho-3-galactohydrolase in S^. 

lactis C2F was verified in a later experiment in this investigation (Table 

15). 

Toluene-acetone treatment of lactis C2F cells reduced the response 

in the g-galactosidase assay considerably (10.2 mllllunlts for untreated 

cells versus 0.3 mllllunlts for solvent-treated cells). Clttl et al. (26) 
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failed to elicit any activity from solvent-treated cells of lactis C2. 

McKay et al. (119) recently observed a highly enhanced enzyme activity 

with solvent-treated lactis C2F cells when PEP was added to the assay 

system. The system as described by McKay et al. (119) when applied in 

this investigation gave only a slight enhancement of enzyme activity with 

solvent-treated cells of this strain (Table 15). However, the phosphory-

lated substrate, 0NPG-6P0^, gave very high enzyme activity, which substan­

tiates the previous observation that lactis C2F possesses a phospho-g-

galactohydrolase (119). 

Although the lac" mutants, lactis F22 and G2, which were isolated 

from lactis C2 (117), would not be expected to utilize lactose, they 

were inoculated into and incubated in lactose broth so that an inducer was 

present. Because the lactose broth contained relatively high concentra­

tions of other carbon sources [Tryptone (1%), yeast extract (0.5%), gelatin 

(0.25%), sodium acetate (0.15%), ascorbic acid (0.05%), and some residual 

carbon sources from the Trypticase soy broth of the inoculum], there were 

sufficient carbon sources present to permit good growth. 

The lac" mutants did not possess any detectable g-galactosidase ac­

tivity in untreated cell systems; after toluene-acetone treatment, strain 

F22 exhibited a very low level of activity. McKay (117) reported that 

neither of these mutants could hydrolyze lactose. McKay et al. (119) 

observed that lactis C2F cell-free extract possessed phospho-g-galacto-

hydrolase activity when a highly concentrated extract (5.7 mg protein/ml) 

was employed, but he did not obtain detectable activity with toluene-

acetone treated cells unless PEP was added to the assay system. Neverthe­

less, the most logical explanation for the low level of activity with 
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lactls F22 Is that there was sufficient PEP contributed from the high 

concentration of solvent-treated cells used In this assay (17.7 mg dry 

cells/ml) to elicit phospho-g-galactohydrolase activity. Also, because 

the concentration of dry cells was greater, the toluene-acetone treatment 

might have been less detrimental to PEP production. 

The two JE. coll strains possessed very high enzyme activity. The 

value of 358 mllllunlts obtained for untreated JE. coll B cells is in 

agreement with the value of 400 mllllunlts reported by Cltti et al. (26). 

They, however, reported a value of 6,600 mllllunlts for solvent-treated 

cells, which is more than three times the level observed in this study. 

Escherichia coll 11775 failed to show a very dramatic increase in enzyme 

activity with toluene-acetone treatment. The increase, however, amounted 

to 210 mllllunlts, which is four times the entire enzymatic activity de­

tected in the toluene-acetone treated cell suspension of 2» shermanii P22. 

Kennedy and Scarborough (93) reported that E. coll does not depend on the 

phosphotransferase system for utilization of lactose. 

Proteus vulgaris did not exhibit detectable activity. This was ex­

pected, because Proteus species do not utilize lactose (16). The comments 

regarding the carbon sources for the lactls lac" mutants also apply for 

the growth of Proteus vulgaris. 

Effect of carbon source in growth medium on S-galactosldase activity 

To determine the carbon source that resulted in maximum g-galacto-

sldase activity, £. shermanii P7, P8, P12, P22, and P51 were grown sepa­

rately in basal medium containing four different carbon sources added 
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singly or in combinations. Cells from each of these media were separately 

harvested and examined for the relative amounts of enzyme activity. The 

carbon sources chosen were sodium lactate, lactose, glucose, and galactose. 

The results are shown in Table 3. 

Although some differences in enzyme levels in cells harvested from 

media containing different carbon sources were observed, the variations 

were insignificant. From these data, it appears that the B-galactosidase 

system of 2* shermanii is probably constitutive rather than Inducible. 

Unfortunately, it cannot be definitely stated that the enzyme Is not in­

ducible because the high concentration of yeast extract (1%) and Trypti-

case (1%) in the basal broth may have yielded metabolic products that re­

pressed enzyme synthesis. 

The g-galactosldase system in many bacterial species Is inducible. 

There are several reports relating to the induclblllty of g-galactosidase 

in E. coll (19, 33, 35, 81, 89, 90, 99, 109, 128, 129, 131, 137). The 

enzyme also is Inducible In faecium (17),•Staphylococcus aureus (45, 

112), and Sac, fragllls (199). Wlânlewskl (202) found that this enzyme 

is Inducible in 2» shermanii NCDO 839 and P. arabinosum ATCC 4965. 

Lactose is an effective inducer of g-galactosidase in many micro­

organisms (17, 26, 27, 45, 108, 109, 199, 202). Jacob and Monod (90) re­

ported an jE. coll strain increased the rate of synthesis of g-galacto-

sidase 10,000-fold in response to the addition of the galactoside to the 

growth medium. Lactose repressed g-galactosldase in several systems (56, 

65, 85, 135). In some of these Instances, inhibition by lactose was attri­

buted to the accumulation of metabolites (56, 85). 
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Table 3. Effect of carbon source in growth medium on g-galactosidase 
activity of five 2- shermanil strains grown 24 hr at 32 C 

Milliunits enzyme activity* 
(nMoles ONP/mg dry cells/min) 

P. shermanii strain P7 P8 

Carbon source U.C.^ T.A.c U.C. T.A. 

Sodium lactate (1.0%) 8.2 4.4 15.0 23.6 

Lactose (0.5%) 6.9 3.6 9.0 11.6 

Lactose (0.5%) + 
sodium lactate (0.5%) 9.2 4.5 7.2 9.7 

Glucose (0.5%) 10.4 5.7 12.0 13.6 

Glucose (0.5%) + 
sodium lactate (0.5%) 8.8 4.8 13.2 23.9 

Galactose (0.5%) 10.0 3.8 
d 

Galactose (0.5%) + 
sodium lactate (0.5%) 12.1 6.5 13.1 19.5 

^ Assay conditions: 15-min incubation at 32 C, 0.05 M sodium 
phosphate buffer (pH 7.0). 

^ Untreated cells. 

^ Toluene-acetone treated cells. 

^ Not determined. 
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Hllllunlts enzyme activity 
(nMoles ONP/mg dry cells/mln) 

P12 P22 P51 

U.C. T.A. U.C. T.A. U.C. T.A. 

15.7 26.6 12.8 64.6 11.6 29.9 

11.6 14.3 9.0 25.7 9.9 6.4 

11.4 16.6 5.6 20.3 9.0 14.4 

12.7 15.6 23.0 60.2 6.9 6.2 

13.3 27.9 20.8 71.1 10.2 20.8 

14.8 54.2 

14.5 22.8 13.5 60.8 11.8 15.9 
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Effect of lactose analogs and related sugars on B-galactosldase activity 

To further Investigate the nature of the cellular control mechanism 

governing the g-galactosidase system in P. shermanii, the relative ability 

of various synthetic non-utilizable lactose analogs and other sugars to 

elicit enzyme response in whole cell assay systems of strains P7 and P22 

were examined. These assays were made on eight different days. To elim­

inate variations inherent in such a procedure so that direct comparisons 

could be made, the results are expressed as per cent of control activity 

for each assay (Table 4). 

With the possible exception of isopropyl-g-D-thiogalactopyranoside 

(IPTG), no significant differences were observed in the relative enzyme 

levels in whole cell suspensions of P7 and P22 exposed to various lactose 

analogs and other sugars. With IPTG, a relatively lower response was en­

countered with both strains. This was in direct contrast to known induc­

ible g-galactosidase systems as in coli, for which IPTG and methyl-g-D-

thiogalactopyranoside (TMG) were found to be good inducers (37) with S^. 

lactls 7962, Citti et al. (26) observed that lactose, TMG, and IPTG were 

good inducers; and, in faecium TMG again proved to be a good inducer 

(17). One of the few systems where IPTG failed to induce g-galactosidase 

was encountered in Staphylococcus aureus (112). This is understandable, 

because this microorganism possesses a phospho-g-galactohydrolase instead 

of a g-galactosidase (78, 93). 

The response to various sugars in this experiment agreed with the 

results obtained in the first experiment using different carbon sources to 

grow the cells for enzyme assay (Table 3). These results also suggest 
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Table 4. Effect of lactose analogs and sugars on 3-galactosldase activity 
of P. shermanll P7 and P22 untreated cells* 

Mllllunlts enzyme activity^ 
(nMoles ONP/mg dry cells/mln) 

Lactose Lactose Per cent 
2" shermanll analog analog activity 

strain or sugar Control or sugar of control 

IPTG 8.7 7.0 80 
TMG 5.0 5.2 104 
PNPG 3.0 3.2 107 
ONPG 2.6 2.9 112 
Lactose 3.6 3.3 92 
Glucose 2.7 3.0 111 
Galactose 3.4 4.4 129 
Maltose 7.7 7.6 99 

IPTG 12.8 7.7 60 
TMG 13.5 9.6 71 
PNPG 6.4 4.4 69 
ONPG 6.7 5.2 78 
Lactose 5.2 5.0 96 
Glucose 4.9 5.7 116 
Galactose 10.2 10.1 99 
Maltose 12.0 11.0 92 

Cells, centrlfuged from 1% sodium lactate broth after 24-hr growth, 
were washed once with sodium phosphate buffer. Lactose analogs (0.01 M) 
and sugars (0.5%) were added to aliquots of cells which were then incu­
bated for 6 hr at 32 C. After incubation, cells were centrifuged from the 
lactose analog or sugar solution and rinsed twice with sodium phosphate 
buffer. The g-galactosidase assay was then performed. Control samples, 
which received buffer instead of lactose analogs or sugars, received the 
same incubation and cell rinsings before being assayed. 

^ Assay conditions: 15-min incubation at 32 C, 0.05 M sodium phos­
phate buffer (pH 7.0). 

^ IPTG - Isopropyl-3-D-thiogalactopyrânoside. 
TMG - Methyl-g-û-thiogalactopyranoside. 
PNPG - p-Nitrophenyl-g-D-galactopyranoside. 
ONPG - o-Nitrophenyl-g-D-galactopyranoslde. 
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that the 3-galactosldase system of shermanli P7 and P22 is probably 

constitutive rather than inducible. It is assumed that there were suffi­

cient endogenous metabolites in the cells for enzyme synthesis if the 

strains were inducible. 

Growth curves 

To confirm the observations made in the previous two experiments, 

another experiment was designed to determine if a differential growth rate 

and/or diauxie growth occurred in two parallel cultures in a basal medium 

containing combinations of lactose and sodium lactate; one with limiting 

lactose and the other with limiting sodium lactate. The results are shown 

in Fig. 2. No difference in growth rate was seen; the lag phases of the 

growth curves were similar for all combinations. Furthermore, no diauxie 

growth pattern was observed, which again indicated that the $-galactosidase 

system of £. shermanil P7 is constitutive. Within the same overall incu­

bation period, an elevated total growth was observed in the medium con­

taining the high level of lactose.. Because lactose is a disaccharide 

consisting of a glucose and a galactose moiety, each mole of lactose would 

yield 4 moles of lactate. Such an elevated overall growth could be ex­

pected in the medium containing the higher level of lactose. The fact 

that higher numbers of microorganisms were present in the media containing 

the high concentration of lactose indicates that the cells were utilizing 

the lactose and so should have been induced in 3-galactosldase is an induc­

ible enzyme in jP. shermanli P7. 
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Fig. 2. Growth curves of £. shermanii P7 in the four combinations 
of high and low concentrations of sodium lactate and lactose 

A - Culture grown in sodium lactate broth was inoculated 
into broth containing 0.0145 M (0.16%) sodium lactate + 
0.0029 M (0.10%) lactose. 

B - Culture grown in sodium lactate broth was inoculated 
into broth containing 0.0145 M (0.50%) lactose + 0.0029 
M (0.03%) sodium lactate. 

C - Culture grown in lactose broth was Inoculated into broth 
containing 0.0145 M (0.16%) sodium lactate + 0.0029 M 
(0.10%) lactose. 

D - Culture grown in lactose broth was inoculated into broth 
containing 0.0145 M (0.50%) lactose + 0.0029 M (0.03%) 
sodium lactate. 
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^ Âbsorbance of cells was determined in growth medium. 
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Effect of Incubation temperature on fi-Ralactosidase activity 

To establish the optimum conditions for g-galactosidase activity in 

untreated and toluene-acetone treated cell suspensions of 2» shermanli P7 

and P22, the effect of temperature was first investigated. The results are 

graphically represented in Fig. 3 and 4. With shermanli P7, the optimum 

temperature for both the untreated and toluene-acetone treated cell systems 

was 52 C. The effect of temperature on the enzyme activity in the solvent-

treated cell system was, however, not as pronounced as in the untreated 

cell system. The enzyme activity at 52 C in the untreated cell system was 

nearly 17 times the level observed at 32 C. 

The optimum temperature for g-galactosldase activity in untreated cell 

suspensions of JP. shermanli P22 was 58 C. The Increase in activity at 58 C 

(the optimum temperature) over the level observed at 32 C, however, was not 

as pronounced as that found in the other strain. With strain P22, the in­

crease was about sevenfold. In the toluene-acetone treated cell system, 

an inverse relationship between enzyme activity and temperature was ob­

served. Maximum activity in this system was observed at 32 C; activity 

declined gradually up to 45 C beyond which a more rapid decrease was ob­

served. The probable reason for this phenomenon was discussed in an 

earlier section. 

Although the optimum growth temperature of propionibacteria is around 

32 C (16), the optimum temperature for g-galactosldase activity in un­

treated cell suspensions of these microorganisms is above 50 C. Similar 

observations have been made with other bacterial systems. McKay (117) 

found that g-galactosidase from L. helvetlcus, L. lactis, and L. acidophilus 
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Fig. 3. Effect of Incubation temperature on G-galactosldase activity 
of F^. shermanll P7 untreated and toluene-acetone treated 
cells 
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exhibited greater activity as measured by ONPG hydrolysis at 50 C than at 

37 C. Clttl et al. (26) found maximum g-galactosidase activity In 

lactls 7962 at 50 C. Knopfmacher and Salle (97) observed that greater 

lactose hydrolysis by coll occurred at 46 C than at 36 C. Some authors 

consider that such microbial enzyme systems exhibiting anomalous optimum 

temperature for activity in relation to the optimum growth temperature of 

the microorganisms themselves, are probably not directly related to the 

vital functions of these microbial cells (23). 

Citti et al. (26) found that toluene-acetone treated cells of 

lactls 7962 showed maximum g-galactosidase activity at 40 C, although the 

optimum temperature for the enzyme in untreated cell suspensions was 50 C. 

The responses obtained in their study (26) were very similar to the 2» 

shermanli F22 system in this investigation. McKay (117), on the other 

hand, found that S-galactosidase activity of toluene-acetone treated cells 

of L. helveticus, L. lactls. and L^. acidophilus, as in untreated cell sus­

pensions, was greater at 50 C than at 37 C. It is probable that the cell-

membrane associated enzyme systems in the lactobacilli are more stable to 

the combined action of the solvent treatment and elevated temperature. 

Effect of -pH on g-galactosidase activity 

The effect of pH on 3-galactosidase activity in untreated and solvent-

treated cell suspensions of 2» shermanli P7 and P22 Is shown in Fig. 5 and 

6. Optimum activity occurred at pH 7.5 in both P7 and P22 untreated and 

toluene-acetone treated cell suspensions. In several other microbial 

systems also, the pH optima for 8-galactosidase have been reported to occur 
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P22 untreated and toluene-acetone treated cells 
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in close proximity to neutral conditions (26, 36, 97, 100, 106, 117, 148, 

193, 198). 

The pH effect in the shermanii P7 system was more prominent in un­

treated cell suspensions than in the toluene-acetone treated cells. Enzyme 

activity in untreated cells of strain P22 was not greatly affected by pH 

change beyond 7.5 up to a maximum of 8.9 which was similar to the response 

obtained with Staphylococcus aureus whole cells by Greaser (45). The pH 

curve for g-galactosidase activity in the untreated cell system of 2» 

shermanii P7, on the other hand, was more typically bell-shaped with a 

sharp peak at pH 7.5 and a rapid decline below or above this value. In 

direct contrast to the toluene-acetone treated cell system of shermanii 

P7, the enzyme activity in the solvent-treated cell suspensions of strain 

P22 exhibited greater dependence on pH for optimum activity. The varia­

bility in the behavior of the enzyme systems in response to pH changes in 

the assay systems suggests that there could be basic differences in the 

structure of the enzyme proteins from these two strains. 

Effect of age of cells on g-galactosidase activity 

Enzyme activities in several shermanii P7 whole cell suspensions, 

made from cells harvested at different stages of growth in sodium lactate 

broth at 32 C over a 72-hr period, are represented in the histogram shown 

in Fig. 7. The maximum enzyme activity was observed in cells harvested 

after 28-hr growth. During the early stages of growth, viz., up to 16 hr, 

the cells had very low enzyme levels. From Fig. 2, which depicts the 

growth response of this strain in sodium lactate-contalnlng medium at 32 C, 



www.manaraa.com

68 

70.0 

60.0 

(0 

>-

t: 50.0 

o 
c 

>-
M 

f/i 

40.0 

30.0 

2 0 . 0  

1 0 . 0  L/ 
/ 
/ 

/ 

12 

/ 
/ 
/ 
/ 
/ 
/ 

JL. 
16 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

20 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

/ 
/ 
/ 
/ 
/ 

24 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

28 

p 
/ 
/ 
/ 
/ 
/ 

/ 
/ 
/ 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
.d. 
36 

/ 
/ 
/ 
/ 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

48 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

72 

AGE OF CELLS AT HARVESTING (hr) 

nMoles ONP liberated from ONPG/mg dry cells/min incubation. 
Assay conditions: 15-min incubation at 52 C, 0.05 M sodium 
phosphate buffer (pH 7.5). 

Fig. 7. Effect of age of cells at harvesting on B-galactosidase 
activity of shermanll P7 untreated cells 
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It Is evident that the culture attains the early logarithmic phase by 

about 16 hr. The 28-hr culture, according to the same growth curve, would 

represent the late logarithmic phase of growth. Similar observations have 

been made with other bacterial systems. Richards and Hlnshelwood (150) 

observed that the 3-galactosidase activity of A. aerogenes, growing in 

aerated lactose broth, was constant during the greater part of the loga­

rithmic phase but registered a rapid increase towards the onset of the 

stationary phase of growth. The decrease in activity in the older cultures 

agrees with the observations of McFeters et al. (116) who observed that 6-

galactosidase concentration in lactis 7962 decreased when growth of the 

culture slowed down. Based on the observations made in this experiment, 

all further enzyme assays were conducted on cultures grown 28 hr at 32 C. 

Effect of incubation time on the rate of 0NP6 hydrolysis 

Hydrolysis of ONPG by untreated cells of P. shermanil P7 and P22 was 

linear for at least a 15-mln assay Incubation period (Fig. 8). Propioni-

bacterlum shermanil P22, however, exhibited a zero order reaction over a 

longer incubation period. This experiment showed that all assays conducted 

In this investigation fell within the period where the catalytic reaction 

exhibited zero order kinetics. 

Effect of buffers on 8-galactosidase activity 

To determine the ionic requirement for optimum g-galactosidase activ­

ity in untreated and toluene-acetone treated cell systems of P. shermanil 

P7 and P22, several different buffer combinations made up of different 

ionic groups were used in the assay system (Fig. 9). Presence of potassium 
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phosphate in the system yielded higher enzyme activity with untreated 

cell suspensions of both strains. Sodium ions appeared to be fairly 

comparable to ions. The near equal response obtained with sodium phos­

phate and sodium chloride added to tris buffer indicated that Na^ was the 

essential ion. Sodium and K ions also have been reported to stimulate 3-

galactosidase in other bacterial systems (26, 117). 

Tris buffer by itself appreciably Inhibited enzyme activity in JP. 

shermanll P7, but in the P22 system, maximum response with untreated cells 

was obtained with tris buffer. This observation also Indicates that the 

3-galactosidase systems in the two strains are quite different. With 

lactis 7962, a tris assay system failed to elicit good g-galactosidase 

activity (26). Sodium chloride, and especially sodium phosphate partially 

reversed the tris inhibition. Stârka (172) observed that phosphate ions 

reversed the inhibitory effect of tris-HCl buffer on E^. coli g-galacto-

sidase. Tris-sodium chloride buffer gave good enzyme activity in other 

investigations (103, 151). 

In toluene-acetone treated cell suspensions, the enzyme activity was 

relatively poor because of the high assay temperature (52 C). The most 

noteworthy observation was that the enzyme activity was greatly affected 

by the presence of tris buffer without any other accompanying buffer salts 

in the toluene-acetone treated assay system of P^. shermanil P22. The 

reason for this observation is not known. 

It is puzzling that tris buffer should give the greatest activity 

with P22 untreated cells, but markedly lower activity in the other assay 

systems, including toluene-acetone treated P22 cells. The protective 
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effect of Na^ and phosphate ions could result from the ions binding to the 

enzyme and altering its stereochemistry. Tris also could affect the enzyme 

activity by altering the stereochemistry of the molecule. It is possible 

that the amino group of tris could react with a carboxyl group of the 

enzyme. With P22 untreated cells, the molecular configuration would be 

altered so the enzyme could react with the substrate more rapidly. With 

toluene-acetone treated cells, the combined effect of the tris, solvent, 

and high incubation temperature could change the molecular configuration 

so that it reacted very slowly with the substrate. 

Effect of manganese chloride on g-galactosidase activity 

Manganous ions have been reported to stimulate g-galactosidase enzyme 

obtained from many different sources (22, 100, 103, 148, 194, 198). To 

investigate if Mn ions also would cause an increase in the enzyme activ­

ity of the two shermanii strains, assays were conducted in the presence 

and absence of 0.4 MnCl^ in the two systems. 

Marked and statistically significant stimulation of enzyme activity 

by Mn"*^ ions was observed only with shermanii P7 cells (Table 5). The 

difference in response to the presence of Mn"*^ ions in the assay systems 

of P7 and P22 again indicates that the g-galactosidase systems in the two 

strains are quite different. 

Untreated cells of 2» shermanii P7, the strain showing greater g-

galactosidase activity in the presence of MnCl^ (Table 5), gave much higher 

activity in the presence of MhClg when a 52 C assay incubation temperature 

was used than when the assay was conducted at 32 C (Fig. 10). In a later 

experiment, MnCl^ stabilized g-galactosidase from cell-free extracts of 
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Table 5. Statistical evaluation of effect of manganese chloride on 
3-galactosldase activity of 2» shermanii P7 and P22 untreated 
cells 

Mllliunita enzyme activity* 
(nMoles ONP/mg dry cells/min) 

Strain MnClg (none) MnCl^ (0.4 nW) Difference 

P7 84.0 115 31.0 
56.4 108 51.6 
72.5 110 37.5 

V 
40.03 

V 
6.08 

t= 6.58* 

P22 65.5 66.2 0.7 
62.4 64.7 2.3 
55.7 54.5 -1.2 

V 
0.60 

Sd= 1.01 

t= 0.59^ 

* Assay conditions: 15-min incubation at 52 C, 0.05 M sodium 
phosphate buffer (pH 7.5). 

^ Not significant at P<0.05. 

Significant at P<0.05. 

P22 at high temperatures also (Table 10, Fig. 16). Other workers have ob­

served that MnClg stabilizes 3-galactosidase in cell-free extracts at tem­

peratures above 50 C (5, 151, 197). 
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Stability of g-galactosldaae enzyme In resting cell suspensions 

The 3-galactosldase activity In resting cell suspensions of Shigella 

sonnel and coll Is quite stable over several days storage (29, 97). 

To determine the relative stability of the enzyme In the proplonlbacterlal 

systems, whole cell suspensions of P^. shermanll P7 and P22 In sodium phos­

phate buffer (pH 7.0) were stored at 3.3 C for 16 days and were then 

assayed for the enzyme. The activity after storage was compared with 

determinations made before storing the cell suspensions. From Table 6 it 

is evident that the enzyme system in strain P22 is more stable than that 

in strain P7. This again further substantiates differences in the enzyme 

systems between the two strains. 

Table 6. Effect of storage at 3.3 C on 3-galactosidase activity of jP. 
shermanll P7 and P22 untreated cells grown 24 hr at 32 C in 
0.5% lactose broth 

Days Milllunits , Per cent of 
Strain storage^ enzyme activity initial activity 

P7 0 62.1 
16 38.6 62 

P22 0 26.9 
16 29.8 111 

^ Cells were stored in 0.05 M sodium phosphate buffer, 

^ nMoles ONP liberated from ONPG/mg dry cells/min incubation. Assay 
conditions: 10-min incubation at 52 C, 0.05 M sodium phosphate buffer 
(pH 7.5). 
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Cell-Free Extract Studies 

g-Galactosldase activity of cell-free extracts 

Cell-free extract of 2» shermanli P22 possessed over six times more 

3-galactosidase activity per milligram protein than extract from sher-

manii P7 (Table 7). This observation shows that enzyme from the two 

strains also exhibits differences when assayed in cell-free extracts. With 

untreated cells, strain P7 had only slightly lower activity than strain P22 

(Table 1). Enzymes from the two strains differed in several other proper­

ties. Strain P7 did not show increased activity when cells were treated 

with solvent (Table 1), was less stable to storage (Table 6), and had a 

slightly lower optimum assay temperature (Fig. 3 and 4). Strain P7 un­

treated cells, however, did possess much higher enzyme activity at 52 C 

than strain P22 untreated cells (Fig. 3 and 4), and gave much greater 

response to MnClg in the assay system (Table 5, Fig. 10). The low activity 

Table 7. 6-Galactosidase activity of shermanii P7 and P22 cell-free 
extracts 

Milliunits enzyme activity^ 
Strain (nMoles ONP/mg protein/min) 

P7 19.5 

P22 128 

^ Assay conditions: 10-min incubation at 52 C, 0.05 M sodium phos­
phate buffer (pH 7.0), 0.4 izM MnCl^. 
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of strain P7 In cell-free extract relative to P22, based on their relative 

activities in untreated cells, indicates that 3-galactosldase in P7 cells 

is labile to cell disruption. The loss in enzyme activity with strain P7 

could be due to the release of a protease, oxidase, or ion or substance 

that reacted with sulfhydryl groups or other sites important for enzyme 

activity. Also, the sudden decrease in pressure when the cells leave the 

French press pressure cell could have an adverse effect on the enzyme 

configuration. 

The French press was the sole method used for cell disruption. 

Wlerzbicki and Kosikowski (200), however, obtained equivalent results from 

ultrasonic disintegration, press crushing, solvent treatment, and air and 

freeze drying. Strain P7 (Table 7), which was adversely affected by dis­

rupting the cells with the French press, also showed reduced activity when 

the cell walls and membranes were disrupted with solvent (Table 1 and 2). 

Effect of incubation temperature on 3-galactosidase activity 

Maximum g-galactosidase activity with cell-free extracts of both 

strains occurs near 52 C, the same optimum observed with untreated cells 

(Fig. 11 and 12). Activity was much lower at assay temperatures above 52 

C. Although 2" shermanii P7 contained approximately only one-tenth as much 

g-galactosidase activity as cell-free extract from strain P22, both strains 

showed the same general response to change in assay incubation temperature. 

Because of the lower 3-galactosldase activity of P7 cell-free extract, it 

was necessary to reconstitute lyophllized cell-free extract to 6.53 mg 

protein/ml, while P22 cell-free extract was reconstituted to only 1.02 mg 

protein/ml. 
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It is surprising that the optimum assay temperature for cell-free 

extract is so near the optimum for whole cell systems. One would expect 

the cell to offer some protection to the enzyme. The high temperature for 

optimum 3-galactosidase activity has been observed with other microorgan­

isms as well as with propionibacteria. The optimum assay temperature for 

B. subtllls cell-free extract was 50 C (7). Wierzbicki and Kosikowski (200) 

found that the optimum assay temperature for hydrolysis of lactose by g-

galactosidase in cell-free extracts from microbial species used in the 

dairy industry was between 40 and 50 C. The significance of optimum assay 

temperature was discussed in the whole cell system. 

Experiments were not conducted in this study to determine if 3-galacto-

sidase was Inactivated at the optimum assay temperature. Other workers 

report that 3-galactosidase was very stable to incubation at 40-50 C. 3-

Galactosidase from coll ML 309 lost very little activity when incubated 

30 min at 40 C (194). Cohn and Monod (36) observed less than a 5% loss of 

activity when a concentrated preparation of purified coll 3-galacto­

sidase was incubated 10 min at 47 C. Other workers report even greater 

stability. Purified jB. subtllis 3-galactosidase was not inactivated by 

storing 1 hr at 50 C (7) and JB. megaterium cell-free extract did not lose 

3-galactosidase activity when held 5 min at 55 C in 1.5 M potassium phos­

phate buffer (103). 

Effect of pH on 3-galactosidase activity 

Optimum 3-galactosidase activity of P22 cell-free extract was obtained 

at pH 7.0 (Fig. 13). Activity decreased more rapidly at higher pH than 

was observed with untreated cells (Fig. 6). Cell-free extract of strain 
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P7 was Insensitive to pH changes. There also was very little response to 

pH change by toluene-acetone treated cells (Fig. 6). The factor which Is 

responsible for reducing enzyme activity when the cell wall and membrane 

is disrupted may alter the tertiary and even the secondary structure of 

the enzyme molecule so that a majority of the enzyme activity is lost. 

That configuration which remains, and accounts for the remaining enzyme 

activity, may not be affected by dissociation and association of carboxyl 

and amino groups. Enzyme activity with P7 whole cells was sensitive to 

pH (Fig. 5). Lederberg (106) found a pH optimum of 7.3 for coll K-12 

cell-free extract which was slightly higher than the pH optimum for JE. coll 

whole cells. He observed that enzyme in intact cells was less responsive 

to pH changes than enzyme in cell-free extracts. He assumed that the in­

tact cells were regulating the pH environment of the enzyme. Cell-free 

extract of subtills had maximum activity at pH 6.5 (7). It is possible 

that this lower pH gave optimum activity because the protease may have been 

less active at this hydrogen ion concentration. 

Linearity of ONPG hydrolysis rate with time 

Hydrolysis of ONPG by P7 and P22 cell-free extracts was linear for at 

least a 15-min assay incubation period (Fig. 14). Because of the rela­

tively lower activity of P7 cell-free extract compared to P22 cell-free 

extract activity, a much higher protein concentration was required with 

this strain to get absorbance readings in the proper range. To be certain 

that the reaction was being measured in the linear region of ONPG hydroly­

sis, that is, that the same amount of product was formed per minute at the 

end of the Incubation period as at the beginning, 10-mln Incubation was 
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adopted In later assays. 

Effect of buffers on B-galactosldase activity 

To determine the buffer system for optimum g-galactosldase activity 

with cell-free extracts, crude extracts of strain P7 and P22 were assayed 

using the buffers listed In Fig. 15. There was very little difference In 

3-galactosldase activity of P7 cell-free extracts with the different 

buffers. As discussed previously with pH effect, the reason for this is 

probably that, as a result of cell disruption, the structure of the enzyme 

was changed, resulting in greatly reduced enzyme activity. The resulting 

enzyme structure was equally active in all buffers used in this experiment. 

Although tris buffer gave the greatest activity with P22 untreated 

cells (Fig. 9), it gave the poorest response with P22 cell-free extract. 

The trls-containlng buffers (tris + sodium phosphate and tris + sodium 

chloride) gave a poor response compared to the phosphate buffers. As 

observed with whole cells (Fig. 9), potassium phosphate gave slightly 

greater activity than sodium phosphate. The reversal of tris inhibition 

by sodium phosphate and sodium chloride also was observed with whole cells 

and was discussed In that section. 

Effect of dialysis on g-galactosidase activity 

Dialysis is inhibitory to enzyme activity because it removes stimu­

latory ions and also may inactivate the enzyme. Dlalyzed P22 cell-free 

extract contained only 21% as much activity as cell-free extract which was 

not dlalyzed (Table 8). Dithiothreitol, a sulfhydryl group protector, 

stabilized the enzyme during dialysis. Cohn and Monod (36) observed that 

3-galactosldase activity in a purified coll preparation was Irreversibly 
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Table 8. Effect of dialyzlng^ 2- shermanll P22 cell-free extract against 
redistilled water and redistilled water containing 0.1 nM 
dithiothreltol, on g-galactosidase activity 

Milliunits enzyme activity^ 
Dialysate (nMoles ONP/mg protein/min) 

None (control) 88.1 
Water 18.5 
Water + dithiothreltol 33.0 

^ Fifty milliliters of cell-free extract were dialyzed against 1,000 
ml redistilled water at 3.3 C. Dialysate was changed every 12 hr for five 
changes. 

^ Assay conditions: 10-min incubation at 32 C, 0.05 M sodium phos­
phate buffer (pH 7.0), 0.4 mM MnCl^. 

inactivated by prolonged dialysis against water. Cell-free extract of 

megaterium, dialyzed for 8 hr against two changes of 0.6% versene + 0.1 M 

methionine and for 6 hr against three changes of triple distilled water, 

retained only one-fourth of its original activity (103). 

Effect of ions on 3-galactosidase activity 

Sodium phosphate, potassium phosphate, ammonium phosphate, sodium 

chloride, potassium chloride, and tris were added to dialyzed F22 cell-

free extract to determine the effect of the various ions on 3-galacto­

sidase activity (Table 9). Results of this experiment substantiate the 

observations in the buffer study (Fig. 15). Much higher activity was 

obtained in the presence of MnCl^. It appears that either Na"*" or ions 

will give good stimulation. The lower activity with ammonium phosphate 

suggests that the Na"*" and K*" ions, rather than the phosphate ions are 
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Table 9. Effect of ions on B-galactosldase activity of P. shermanli P22 
cell-free extract dialyzed against redistilled water containing 
0.1 nM dithiothreitol 

Milliunits enzyme activity 
(nMoles ONP/mg protein/mln) 

Ions added (0.05 M) MhClg (none)^ MMnClg (0.4 niM)^ 

Control (not dialyzed) 49.8^ 71.4 
Sodium phosphate 5.6 27.0 
Potassium phosphate 5.2 30.5 
Ammonium phosphate 2.5 20.4 
Sodium chloride 2.8 40.6 
Potassium chloride 6.0 53.6, 
Tris 0.4 Int. 

^ Assay conditions: 30-mln incubation at 52 C. 

^ Assay conditions: 10-mln incubation at 52 C. 

^ Assay conditions: 0.05 M sodium phosphate buffer (pH 7.0). Enzyme 
activities of the controls are averages of several determinations made on 
the same source of lyophlllzed cell-free extract. The assays were per­
formed in separate experiments. 

^ Interference. A red-colored compound which absorbed at 420 nm 
formed in the sample when sodium carbonate was added. 

responsible for the Increased activity. Potassium ions gave slightly more 

activity than Na^ ions in the assay system containing MnClg. 

3-Galactosidase activity is not presented for cell-free extract in 

the presence of MnClg with tris buffer because a red-colored complex formed 

which had absorbance at 420 nm. The red color also formed in the samples 

receiving sodium chloride and potassium chloride, approximately 1 hr after 

sodium carbonate was added. Results in Table 9 are acceptable, however, 

because absorbance of controls [(buffer + ONPG + sodium carbonate) and 
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(boiled cell-free extract + ONPG + sodium carbonate)] which received MnCl^ 

was In the same range as absorbance of controls which did not receive 

MnClg. Also, no visible red color was observed in the controls or assay 

samples. The red color did not form in samples which received phosphate 

buffers. A reddish brown color formed when MnCl^ was added to sodium 

carbonate. However, the color was obviously different than the color 

which developed In assay samples. The color could result from a comblna-

-H- -H-
tion of Mn ions in an alkaline environment, MnCo^, and complexes of Mn 

Ions with proteins of the cell-free extract. 

Both Na and K ions are reported to stimulate 3-galactosldase activ­

ity with other microorganisms. Potassium Ions caused maximum stimulation 

of ONPG hydrolysis by 3-galactosldase from jE. coll (100) and Sac, fragllis 

(49). With some microorganisms (26, 36, 103, 148), Na^ ions caused greater 

ONPG hydrolysis than ions. 

Effect of manganese chloride on B-galactosidase activity 

Cell-free extract of strain P7 did not show statistically significant 

Increased 3-galactosldase activity when MnClg was added to the assay (Table 

10). Only three trials were performed, however. When the data presented 

in Fig. 16 were statistically analyzed, a significant increase in 3-galacto-

sldase activity of P7 cell-free extract was observed in response to MnClg. 

Table 10 shows that there was increased activity in one of the trials, but 

decreased activity in two trials. It could be that the response of P7 

cell-free extract to MnClg is dependent upon the state of denaturatlon of 

the enzyme. Because of the low enzymatic activity of g-galactosidase from 

P7 cell-free extract, this phenomenon was not investigated further. 
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Table 10. Statistical evaluation of effect of manganese chloride on 3-
galactosidase activity of P^. shermanii P7 and P22 cell-free 
extracts 

Milliunits enzyme activity^ 
(nMoles ONP/mg protein/min) 

Strain MnClg(none) MnClg (0.4 mM) Difference 

P7 4.64 6.02 1.38 
2.99 2.94 -0.05 
3.33 2.86 -0.47 

= 0.287 

=d = 0.56 

t = 0.54b 

P22 31.2 64.2 33.0 
39.7 60.4 20.7 
59.9 82.0 22.1 

^d 
=25.27 

®d = 3.89 

t = 6.50* 

^ Assay conditions: 15-min incubation at 52 C, 0.05 M sodium phos­
phate buffer (pH 7.0). 

^ Not significant at P<0.05. 

* 
Significant at P<0.05. 

Manganese chloride caused statistically significant increased 6-

galactosidase activity with shermanii P22 cell-free extract (Table 10). 

The increased activity may have partially resulted from stabilization of 

3-galactosidase by MnClg at the 52 C incubation temperature. Results in 

Fig. 10 and 16 and observations of other workers suggests that MhClg 
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stabilizes 3-galactosldase above 50 C (5, 151, 197). 

Table 11 presents a statistical analysis of the effect of MnCl^ on g-

galactosldase activity of P7 and P22 cell-free extract when assays were 

incubated at temperatures from 18 to 65 C. As mentioned previously, MhClg 

caused a significant increase in enzyme activity of strain P7 cell-free 

extract. The Increase with cell-free extract was approximately the same 

at all Incubation temperatures used. With strain P22, MnClg Increased 

3-galactosldase activity at all temperatures used, but because the stimu­

lation was much greater at 52 C than at other temperatures, the over-all 

effect of MnClg was not statistically significant. It should be emphasized 

that MnClg does cause statistically significant increased 3-galactosidase 

activity when assays are incubated at 52 C (Table 10). 

The effect of MnCl^ on 3-galactosidase activity of P7 and P22 cell-

free extracts at assay incubation temperatures from 18 to 65 C is presented 

graphically in Fig. 16. With both strains, MnClg caused a greater increase 

in activity as the incubation temperature was increased up to 52 C, but 

the effect is much more pronounced with strain P22. At 52 C, P22 cell-

free extract possessed over twice as many mllliunlts activity when MnCl^ 

was added to the assay system. The stimulatory effect of MnCl^ with enzyme 

from other microorganisms has been discussed previously. 

Effect of sulfhydryl group blocking reagents on 3-galactosidase activity 

The stabilization of P22 3-galactosldase by dithlothreltol (Table 8) 

suggests that sulfhydryl groups are Important for enzyme activity with 

this strain. As shown in Table 12, sulfhydryl group blocking reagents and 

sulfhydryl group protectors were added to the ONPG assay system with P22 
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Table 11. Statistical evaluation of effect of manganese chloride on 
3-galactosldase activity of shermanll P7 and P22 cell-free 
extracts when assays were incubated at 18, 28, 32, 37, 45, 52, 
and 65 C 

Strain 
Assay 
temp (c) 

Milliunits enzyme activity* 
(nMoles ONP/mg protein/min) 

Strain 
Assay 
temp (c) MnClg (none) MnClg (0.4 mM) Difference 

P7 18 2.37 2.88 0.51 
28 2.80 3.48 0.68 
32 3.18 3.79 0.61 
37 3.46 4.20 0.74 
45 4.06 4.96 0.90 
52 4.64 5.38 0.74 
65 1.84 2.60 0.76 

0.706 

®d ° 0.0466 

t = 15.1** 

P22 18 32.2 32.4 0.2 
28 44.5 46.4 1.9 
32 50.3 51.6 1.3 
37 53.5 58.4 4.9 
45 59.0 65.2 6.2 
52 31.2 64.2 33.0 
65 7.6 16.9 9.3 

^d = 8.11 

®d = 4.32 

t = 1.88^ 

^ Assay conditions; 15-min incubation, 0.05 M sodium phosphate 
buffer (pH 7.0). 

^ Not significant at P<0.05. 

** 
Significant at P<0.01. 
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Table 12. Effect of sulfhydryl group reagents on g-galactosidase activity 
of P. shermanii P22 cell-free extract 

Milliunits Per cent 
enzyme , enzyme 

Treatment* activity activity 

Control 35.6 100 

DTT (1 nW) 34.3 96 

lA (1 mM) 37.4 105 
lA (1 mM) + DTT (1 mM) 42.3 119 
lA (20 mM) 25.3 71 
lA (20 nM) + DTT (3 nM) 28.2 79 

NEM (1 mM) 19.2 54 
NEM (1 mM) + DTT (1 mM) 34.9 98 
NEM (10 nM) 12.2 34 

PCMB (0.5 mM) 1.0 3 
PCMB (0.5 mM) + DTT (3 n^) 31.5 88 
PCMB à mM) 0.7 2 
PCMB (1 mM) + DTT (1 mM) 12.7 36 
PCMB (1 nM) + DTT ( 5  uM) 31.3 88 

GTH (2 nM) 1.1 3 

DTT - dithiothreitol, lA - a-iodoacetamide, 
NEM = N-ethylmaleimide, PCMB - p-chloromercuribenzoate, 
GTH - glutathione (reduced). 

b 
nMoles ONP liberated from ONPG/mg protein/min incubation. Assay 

conditions: 10-min incubation at 52 C, 0.05 M sodium phosphate buffer 
(pH 7.0), 0.4 nM MnClg. 

cell-free extract to verify the importance of sulfhydryl groups in 3-

galactosidase of this strain. 

The least inhibitory sulfhydryl group reagent was a-iodoacetamide. 

An assay mixture with 20 nM a-iodoacetamide exhibited 71% of the activity 

in the unpoisoned system. Wallenfels and Halhotra (190) reported virtually 
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no Inhibition of E^. coli ML 309 B-galactosidase by 0.9 nM iodoacetamide. 

lodoacetate also has little inhibitory action on p-galactosidase (44, 49, 

106). 

A l l #  c o n c e n t r a t i o n  o f  N - e t h y l m a l e i m i d e  r e d u c e d  t h e  e n z y m e  a c t i v i t y  

to 54% of the initial activity. Wallenfels and Malhotra (190) found that 

1 nM N-ethylmaleimide in 2-amino-2-(hydroxymethyl)-1,3-propanediol acetate 

buffer (pH 7.5), did not inhibit S^galactosidase. By increasing the con­

centration to 3 tM and increasing the pH to 8.6, N-ethylmaleimide became 

inhibitory. Table 12 shows that a sample of cell-free extract which re­

ceived 10 nM N-ethylmaleimide retained only one-third of the original 

enzyme activity. 

The most inhibitory sulfhydryl group reactant was p-chloromercuri-

benzoate. A 5 nM concentration of this reactant reduced the enzyme activ­

ity to only 3% of the original activity. Davies (49) reported that a 0.63 

nM concentration of p-chloromercuribenzoate completely inhibited lactose 

hydrolysis by 3-galactosidase from Sac, fragilis. Sulfhydryl groups are 

important for 3-galactosidase activity in other microorganisms also (44, 

97, 190, 198). 

Inhibition by all sulfhydryl group reagents was partially reversed by 

dithiothreitol (30), a sulfhydryl group protector. Increasing the con­

centration of dithiothreitol resulted in increased 3-galactosidase activity. 

A 2 nM concentration of glutathione resulted in almost complete inhi­

bition of 3-galactosidase activity. Because the reduced glutathione adds 

additional sulfhydryl groups to the system, it should protect sulfhydryl 

groups of 3-galactosidase by competing with them for the inhibitor. The 

reason for the inhibition by glutathione is unknown. Wallenfels and 
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Malhotra (190) also observed that g-galactosidase (]E. coll ML 309) was 

Inhibited by reduced glutathione. They did not offer an explanation for 

this observation. Glutathione may alter the configuration of the enzyme 

molecule, resulting in reduced activity. It is possible that the amino 

group of glutathione is responsible for the inhibitory effect, since tris, 

which also reduces G-galactosldase activity, also contains an amino group. 

Effect of storage on g-galactosidase activity 

3-6alactosidase activity in P22 cell-free extract was stable to 

storage (Table 13). Even after storing over 3 days at 25 C, there was 

still more than 50% of the initial activity remaining in the extract. 

Enzyme activity of both strains was very stable to freezing (Table 14). 

3-Galactosldase activity of strain P7 was more labile to lyophilization 

than 3-galactosidase in strain P22. Strain P7 retained only 42% of the 

original enzyme activity after being lyophllized and stored at -20 C for 

73 days, while strain P22 retained 69% of the original activity after 

being lyophllized and stored at -20 C for 75 days. 3-Galactosidase from 

these propionibacteria, however, is not as stable as the enzyme from other 

microorganisms. Landman and Bonner (104) observed that lyophllized 

mycelial pads of Neurospora could be stored in a vacuum desiccator for 

weeks without loss of g-galactosidase activity. Other workers have found 

g-galactosidase enzyme in cell-free extracts is stable to refrigerated 

(106) and frozen storage (7, 87, 103). Purified extract was more stable 

to storage than crude extract (7, 103). 
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Table 13. Effect of storage up to 74 hr at 3.3 and 25 C on 3-galactosldase 
activity of jP. shenaanll P22 cell-free extract 

Storage Mllllunlts enzyme activity^ Per cent of 
temp hr (nMoles ONP/mg protein/min) initial activity 

0 98.6 
9.0 98.8 100 
24.5 97.4 99 
49.5 94.6 96 

0 98.6 
9.0 92.0 93 
24.5 81.6 83 
49.5 76.0 77 
74.0 53.9 55 

^ Assay conditions: 10-mln incubation at 52 C, 0.05 M sodium 
phosphate buffer (pH 7.0), 0.4 nM MnClg. 

Table 14. Effect of preservation method on B-galactosidase activity of 2» 
shermanil P7 and P22 cell-free extracts stored at -20 C 

Strain 

Milliunits 
enzyme activity 

Storage 
(days) 

Per cent activity of 
fresh cell-free extract 

Strain Fresh 
Storage 
(days) Frozen Lyophilized 

P7 19.5 32 99 45 
73 99 42 

P22 128 75 97 69 

^ nMoles ONP liberated from ONPG/mg protein/min incubation. Assay 
conditions: 10-min incubation at 52 C, 0.05 M sodium phosphate buffer 
(pH 7.0), 0.4 m MnClg. 
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Phospho-ê-Galactohydrolase Activity 

Phosphoenolpyruvate (PEP) did not appreciably Increase and NaF did 

not inhibit g-galactosidase activity of 2» shermanii P7 or P22 untreated 

or toluene-acetone treated cells (Table 15). Activity with 0NPG-6P0^ was 

generally less than when ONPG was the substrate. Strains P7 and P22 gave 

negative results in the alkaline phosphatase test which demonstrates that 

an alkaline phosphatase was not present. A phosphatase could dephos-

phorylate the substrate before it was hydrolyzed. These observations in­

dicate that neither 2- shermanii P7 nor P22 rely on a PEP-dependent enzyme 

for hydrolyzing ONPG. g-Galactoside hydrolysis is dependent upon a 3-

galactosidase, not a phospho-p-galactohydrolase. It was suspected that jP. 

shermanii P7 might possess the PEP-dependent enzyme because of the de­

creased enzyme activity with this strain after toluene-acetone treatment. 

McKay et al. (119) demonstrated that lactis C2F contained the PEP-

dependent system for 3-galactoside utilization. They attributed substrate 

hydrolysis to an enzyme different from g-galactosidase. Streptococcus 

lactis C2F was assayed in this experiment to demonstrate that the assay 

system in this investigation was functioning properly. Toluene-acetone 

treated C2F cells had over a 400-fold increase in activity with 0NPG-6P0^ 

as substrate compared to ONPG. Manganese chloride was necessary to obtain 

optimum activity in this assay system. Streptococcus lactis C2F did not 

show high activity with 0NPG-6P0^, unless the cells received toluene-

acetone treatment. This resulted because the phosphotransferase system 

does not transport phosphorylated substrates, but phosphorylates the sub­

strate during passage through the cell membrane (78, 93). When the cell 
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Table 15. Phospho-g-galactohydrolase activity of 2» shermanll P7 and P22 
grown 28 hr in 1% sodium lactate broth and of _S. lactis C2F 
grown 7 hr in 1% lactose broth 

Assay system 
Incubation MnClg MgClg 

Strain Cell treatment temp (C) (0.4 nM) (0.4 nM) 

P7 Untreated^ 32 _ 

Untreated ^ 32 + -

Toluene-acetone 32 - -

Toluene-acetone , 32 + -

Cell-free extract 52 + 

P22 Untreated^ 32 _ 

Untreated ^ 32 + -

Toluene-acetone 32 - -

Toluene-acetone 32 + -

Cell-free extract 52 + 

C2F Untreated^ 37 + 
Untreated 37 + + 
Untreated ^ 37 - -

Toluene-acetone 37 + -

Toluene-acetone 37 + + 
Toluene-acetone 37 

" 

^ nHoles ONP liberated from ONPG/mg dry cells/mln Incubation. With 
cell-free extract, the activity is expressed per mg protein. 

^ Assay conditions; 15-mln Incubation, 0,05 M sodium phosphate 
buffer (pH 7.5). 

^ Not determined. 

^ Assay conditions: 10-min Incubation, 0.05 M sodium phosphate 
buffer (pH 7.0). 

^ No detectable activity. 

^ Assay conditions: 15-min incubation, 0.05 M sodium phosphate 
buffer (pH 7.0). 
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Mlllluntts enzyme activity* 
Assay system 

ONPG ONPG + PEP(8 nM) ONPG + NaF(8 nM) 0NPG-6P0^ 

11.2 
8 .0  
5.8 
7.2 
3.4 

12.7^ 

6.4 
7.0 
3.6 

5.8 
10.0 
48.8 
53.9 
94.0 

5.6 

46.2 
38.0 
83.8 

10.2 
9.6 
9.1 
0.3 
1.0 
0.8  

4.3 

10.5 

6.2 

0.4 
5.0 
1.4 
7.4 
2 . 8  

6.0  

42.6 

NDA 
5.8 
2.1 
17.0 
84.0 

3.0 
2 .8  
2.9 

121 
126 
50.1 
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membrane is disrupted by the solvent, the phoaphorylated substrate can 

come in contact with the phospho-g-galactohydrolase. Cell-free extract of 

lactis C2F was not investigated in this study, but McKay et al. (119) 

observed 3-galactohydrolase activity in cell-free extract of this strain. 

Much lower activity of lactis C2F was obtained when PEP was added 

to an ONPG assay system than when the phosphorylated substrate was used 

(4.3 milliunits activity for ONPG + PEP vs. 126 milliunits activity with 

0NPG-6P0^), McKay et al. (119) observed 107 milliunits activity when 2 nW 

PEP was added to an ONPG assay system containing 3 ml of 5 nM ONPG (this 

activity value has been corrected for the difference in volume of the two 

assay systems). The same assay conditions were employed in both experi­

ments. The activity of C2F with the phosphorylated substrate (121 and 

126 milliunits activity. Table 15) agrees fairly well with the activity 

observed by McKay et al. (119) with ONPG + PEP (107 milliunits activity). 

Low enzyme activity was observed when toluene-acetone treated cells 

were assayed with ONPG. McKay et al. (119) did not observe detectable 

activity when toluene-acetone treated C2F cells were assayed with ONPG. 

They concluded that lactis C2F did not contain a g-galactosidase but 

possessed a different enzyme which hydrolyzed the phosphorylated substrate. 

McKay et al. (119) observed that highly concentrated cell-free extract 

(5.7 mg protein/ml) did hydrolyze ONPG. Apparently, there was sufficient 

PEP present in the concentrated extract to transport some uf the ONPG 

substrate; The low level of activity in this experiment (Table 15) could 

be due to PEP present with the cells or perhaps this strain actually 

possessed a g-galactosidase as well as a phospho-g-galactohydrolase. 
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Concentration of B-Galactosldase 

with Ammonium Sulfate Precipitation 

An attempt was made to precipitate the nucleic acids from 2* shermanll 

P22 cell-free extract by adding 1 mg protamine sulfate/mg protein (115), 

but this also precipitated 88% of the B-galactosldase activity, so this 

step was not used. Protein was precipitated from cell-free extract by 

adding ammonium sulfate In 10% (W/V) Increments to determine the amount of 

ammonium sulfate to add for maximum concentration of g-galactosidase. 

Results In Table 16 show that a majority of the 3-galactosidase precipi­

tates when 20 and 30% (W/V) ammonium sulfate are added. Consequent: , 

3-galactosldase was concentrated by discarding the protein which preci­

pitated at 10% (W/V) ammonium sulfate and then collecting the fraction 

which precipitated after an additional 20% (W/V) ammonium sulfate was 

added. This fraction contained only a 1.9-fold Increase in g-galactosldase 

activity, as shown in Table 17. Craven et al. (44) and Cohn and Monod 

(36) reported a 3-fold and a 3.1-fold concentration of 3-galactosldase 

from coll by ammonium sulfate precipitation at 40 and 50% of saturation. 

McFeters et al. (113, 115) observed a fourfold and a fivefold concen­

tration of B-galactosidase activity with ammonium sulfate precipitation of 

enzyme from lactis 7962. 

Sephadex Separation 

An attempt was made to separate 3-galactosldase from a F22 cell-free 

extract on a Sephadex G-lOO column. The extract was precipitated with 30% 

(W/V) ammonium sulfate as previously described. 3-Galactosidase was almost 
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Table 16. Ammonium sulfate fractionation of shermanii P22 cell-free 
extract^ for the partial isolation of 3-galactoaldase 

Per cent 

(NHP2SO4 

Volume of 
resuspended 
fraction Mg protein/ml 

Specific, 
activity 

10 2 1.08 61.5 
20 10 3.60 110 
30 20 3.72 129 
40 5 5.97 65.0 
50 5 14.3 10.6 
60 5 3.92 1.4 

^ A 1% solution (W/V) of lyophilized cell-free extract was made. The 
protein concentration of this solution was 3.48 mg/ml and the specific 
activity was 99.2 milliunits activity. 

^ nMoles ONP liberated from ONPG/mg protein/min incubation. Assay 
conditions: 10-min incubation at 52 C, 0.05 M sodium phosphate buffer 
(pH 7.0), 0.4 nM MnCl^. 

Table 17. Relative purification of g-galactosidase from shermanii P22 
cell-free extract, by ammonium sulfate precipitation 

Mg protein Milliunits Extent 
per specific of 

Sample milliliter activity^ concentration 

Cell-free extract 1.70 98.6 

Reconstituted 
precipitate 
obtained at 
>10 to 30% 
(NH^)2S0^ (W/V) 1.40 185 1.9 

^ nMoles ONP liberated from ONPG/mg protein/min incubation. Assay 
conditions: 10-min incubation at 52 C, 0.05 M sodium phosphate buffer 
(pH 7.0), 0.4 mM MnCl^. 
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completely Inactivated by the column. Because of the low enzyme activity, 

a qualitative micro-assay was performed instead of the conventional 3~ 

galactosidase assay. One drop of the fraction and 4 drops of ONPG were 

added to a 10 X 75 mm culture tube and the mixture was incubated at 37 C 

until distinguishable yellow color was present. Because of the low activ­

ity, it was necessary to incubate the assay samples 1 hr or longer to 

detect activity. When samples were Incubated at 52 C, activity was not 

detected. The enzyme was apparently inactivated before sufficient hydrol­

ysis of ONPG occurred to yield detectable product. The smaller quantity 

of sample and substrate were used because of the many fractions that were 

assayed. 

The highest g-galactosidase activity was present in fraction 17 (BO­

SS ml eluant). This fraction hydrolyzed ONPG to produce visually detec­

table yellow color (absorbance of approximately 0.100) after 1-hr incuba­

tion at 37 C. After 3-hr incubation, activity also was detected in frac­

tions 18 and 19 (85-95 ml eluant). After 9-hr incubation, activity was 

detected in fractions 15 and 16 (70-80 ml eluant), fractions 35 to 40 

(170-200 ml eluant), fraction 42 (205-210 ml eluant), and fraction 46 (225-

230 ml eluant). Separation of g-galactosidase from other sources on G-200 

columns has shown that the 3-galactosidase activity peak occurs just after 

the main protein peak (44, 74, 115), as was observed in this experiment. 

Blue Dextran 2000 was collected in fractions 9-25 (40-125 ml). The main 

protein peak occurred in fraction 15 (70-75 ml eluant). 

Fractions were pooled, condensed in dialysis tubing, and assayed for 

g-galactosidase activity. No detectable activity was observed using the 

conventional g-galactosidase assay. With the micro-assay procedure, lower 
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activities were present in the pooled fractions than In the Individual 

fractions. Blermann and Giantz (13) concentrated pooled fractions from 

Sac, lactls by adding solid ammonium sulfate to 65% of saturation. This 

may be less detrimental to enzyme activity than concentrating in dialysis 

tubing. Perhaps MnCl^, added to the eluant, also would have helped stabi­

lize the enzyme. 

Wlâniewskl (202) successfully separated 3-galactosldase from jP. 

shermanli and 2» arabinosum. He obtained a 30- to 40-fold purification on 

a diethylamlnoethyl-cellulose solumn in the Cl~ form using stepwise ionic 

strength elutlon at pH 7.0. g-Galactosidase was eluted at ionic strength 

n 2 
0.5 y [y=^( ̂  M. X Charge. ) of the n ionic species in solution]. 

1=1 1 1 

3-Galactosidase from JE. coll has been successfully concentrated and 

separated by many workers (8, 36, 44, 86, 100, 106, 124, 130, 177, 194). 

3-Galactosidase from Sac, lactls (13), faecium (17), Sac, fragilis (49), 

jB. megaterlum (103), Neurospora (104), and S^. lactls (113, 115) also has 

been purified. Purified enzyme is very labile (13, 113, 115, 202). If 

the procedures which were used successfully by other workers were used 

with 2» shermanli P22 cell-free extract, it is probable that the enzyme 

could be successfully purified. 

This investigation was an outgrowth of earlier studies on proplonl-

bacterla in this department. Although 3-galactosidase has been studied 

extensively in many other microorganisms, it has not been Investigated 

In detail in proplonlbacterla. Results of this investigation show that 2* 

freudenrelchll does not possess 3-galactosidase activity. This was con­

sistent with the previous observations made in a taxonomlc study in this 

department. Examination of the 3-galactosldase of JP* sheirmanil revealed 
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that it was similar in many respects to g-galactosidase from other 

microorganisms. Its optimum assay conditions; incubation at 52 C, pH 7.5 

for whole cells and 7.0 for cell-free extracts, stimulation by NnCl^, Na^ 

ions, and K*" ions; were similar to the optima observed with other micro­

organisms. g-Galactosidase activity of the propionibacteria strains 

studied was stable to storage, but it was not as stable as with other 

microorganisms. The 2» shermanii strains investigated, P7 and P22, did 

not possess 3-galactohydrolase activity. 
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SUMMARY 

B-Galactosidase activity of P. shermanll was Investigated as a con­

tinuation of the extensive work with propionibacterla in our laboratory. 

Enzyme activity was measured with 0NF6. Because of taxonomic significance, 

2» freudenreichli, which differs from 2» shermanll only by its inability 

to ferment lactose, also was assayed for g-galactosidase activity. 

Two strains of shermanll. P7 and P22, were selected from 10 strains 

of this species, based on their response to toluene-acetone treatment when 

assayed at 32 C, for extensive investigation. Toluene-acetone treatment of 

whole cells reduced the activity of strain P7 by 46%, while strain P22 

showed a fivefold increase in activity in response to the solvent treatment. 

None of 10 strains, of 2» freudenreichli possessed detectable activity with 

untreated or toluene-acetone treated cells. 

Growth and assay conditions for maximum g-galactosidase activity were 

determined. Cells grown in sodium lactate medium possessed as high or 

higher activity than cells grown in media containing lactose, glucose, or 

galactose. Enzyme activity was not appreciably affected by Incubating 

cells 6 hr at 32 C with lactose, glucose, galactose, and maltose or with 

the lactose analogs IPTG, TMG, ONPG, and PNPG. This lack of response 

suggests that g-galactosidase is not inducible in these strains. As an 

additional test for an Inducible system, strain P7 cells were inoculated 

into media containing the two combinations of high and low (0.0145 and 

0.0029 M) concentrations of sodium lactate and lactose. Growth was meas­

ured spectrophotometrlcally every hour for 48 hr. The lag period was 

the same whether lactose- or sodium lactate-grown cells were used as the 
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Inoculum. There was no evidence of dlauxle growth. These observations 

also suggest that g-galactosldase is not Induced in this strain. 

Cells from strain P7 were harvested after 12, 16, 20, 24, 28, 36, 48, 

and 72 hr of growth and assayed for g-galactosidase activity to determine 

the optimum growth time. Highest activity was present in 28-hr cells. 

Cell-free extracts of both strains possessed g-galactosldase activity. 

Extract from strain P22 was much more stable to cell disruption (128 mllli-

units activity) than extract from strain P7 (19.5 milliunits activity). 

With cell-free extracts, activity is expressed per milligram protein. 

Standard g-galactosidase assay procedures were adopted which most 

nearly matched the optimum assay conditions for both strains. Un­

treated cells were incubated 10 min at 52 C using sodium phosphate buffer 

(pH 7.5). There was little difference in activity of solvent-treated P7 

cells when the assays were Incubated at different temperatures, while un­

treated cells showed a 17-fold increase in activity between 32 and 52 C 

incubation. Activity of P22 toluene-acetone treated cells decreased as 

the assay incubation temperature was Increased. Untreated P22 cells had 

greater activity than solvent-treated cells when assayed at 45 C and above. 

Optimum activity with cell-free extracts also was obtained at 52 C, but 

optimum pH was 7.0. 

Potassium phosphate gave slightly greater activity than sodium phos­

phate buffer but tris gave decidedly lower activity in all assay systems 

except with P22 untreated cells. In the systems where tris gave low 

activity, sodium phosphate and sodium chloride increased activity. 

Manganese chloride significantly increased 3-galactosidase activity 

with P7 untreated cells and cell-free extracts from strains P7 and P22. 
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The stimulatory effect of MnClg was more pronounced at 52 C than at lower 

incubation temperatures, which suggests that it stabilized the enzyme 

against heat inactivation. 

Stability to storage was investigated. B-Galactosidase activity of 

strain P22 was more stable to storage than enzyme in strain P7. Untreated 

cells of P7, stored 16 days at 3,3 C, retained 62% of the original enzyme 

activity, while strain P22 possessed 111% of the original enzyme activity. 

Cell-free extract from strain P22 still retained 96% of the original activ­

ity after being stored 2 days at 3.3 C, and 77% of the original activity 

after being stored 2 days at 25 C. Enzyme activity in both strains was 

very stable to freezing. Freezing at -20 C was less detrimental to enzyme 

activity than lyophilization. Strain P22 retained 97% of the original 

enzyme activity after freezing and storing at -20 C for 75 days. Lyophi-

lized cell-free extract, stored under the same conditions, retained only 

69% of the original activity. 

B-Galactosidase activity in cell-free extracts was labile to dialysis, 

but was partially protected by dithiothreitol, a sulfhydryl group protector. 

Activity was partially restored to dialyzed cell-free extract by addition 

of potassium chloride, sodium chloride, potassium phosphate, sodium phos­

phate, and ammonium phosphate. 3-6alactosidase activity of cell-free ex­

tract was reduced by the sulfhydryl group reagents p-chloromercuribenzoate, 

N-ethyImaleimide, and a-iodoacetaminde, but was partially protected by 

dithiothreitol, which indicates that sulfhydryl groups are important in 

3-galactosidase activity. 

Propionibacterlum shermanli P7 and P22 were assayed for a phospho-B-

galactohydrolase by employing both ONPG + PEP and 0NPG-6P0^. Neither 
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strain possesses the PEP-dependent enzyme. 

6-Galactosidase activity was concentrated 1.9 times by fractionating 

P22 cell-free extract with ammonium sulfate. Attempts to purify the enzyme 

with a Sephadex G-lOO column resulted in loss of most of the g-galactosidase 

activity. 
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APPENDIX 

Sodium Lactate Broth 

Trypticase (Baltimore Biological Laboratory) 10 g 
Yeast extract (Difco) 10 g 
Potassium phosphate, dibasic 0.25 g 
Sodium lactate 10 g 
Distilled water 1 liter 

The hydrogen ion concentration was adjusted so that, after autoclaving 

for 20 min at 121 C, the pH was 7.0 ± 0.1. When solid medium was desired, 

15 g agar (Difco) were added. 

Preparation of Purified Sodium Lactate 

Sodium lactate was purified by crystallizing lactide (3,6-dimethy1-2,5 

p-dioxanedione. Clinton Corn Processing Company, Clinton, Iowa) according 

to the procedure of Deane and Hammond (51). One hundred and sixty-six 

milliliters of chloroform were added to 315.7 g lactide in a 1,000-ml 

Erlenmeyer flask which was then heated on a hot plate. The flask, which 

contained a boiling stick, was covered with a watch glass during the 

heating. Since the lactide did not readily go into solution, an additional 

190 ml of chloroform were added. After, the lactide dissolved, it was 

decanted into a 1,000-ml beaker to remove most of the sediment. After 

cooling to room temperature, the solution was placed at 3.3 C for 24 hr 

to permit crystallization. Crystals were rinsed on a Buchner funnel with 

200 ml cold (3.3 C) chloroform. After evaporation of the chloroform at 

room temperature, the crystals were weighed to determine the number of 

moles of lactide. Twice this number of moles of NaOH (in the form of a 

10% NaOH solution) were slowly added to hydrolyze the lactide to sodium 



www.manaraa.com

129 

lactate. After the calculated amount of NaOH was added, the solution was 

heated on a hot plate. The pH was measured to make sure it was above 7.0, 

which would indicate that all the lactide was hydrolyzed. The sodium lac­

tate was cooled, diluted to 500 ml, and the per cent sodium lactate calcu­

lated. 

Lactose Broth 

Lactose 10 g 
Tryptone (Difco) 10 g 
Yeast extract (Difco) 5 g 
Gelatin 2.5 g 
Sodium chloride 4 g 
Sodium acetate 1.5 g 
Ascorbic acid 0.5 g 
Distilled water 1 liter 

The hydrogen ion concentration of the medium was adjusted so that 

after autoclaving 20 min at 121 C, the pH was 7.0 ± 0.1. The lactose was 

incorporated into the medium by adding a 15% lactose solution (filter-

sterilized) immediately before inoculation. When a solid medium was de­

sired, 15 g agar (Difco) were added. 

Lowry's Procedure for Determining Protein 

Alkaline copper reagent was prepared on the day it was to be used by 

mixing 50 ml of 2% NagCOg in 0.1 N NaOH with 1 ml 0.5% CuSO^'SHgO in 1% 

sodium citrate. Folin reagent was prepared by diluting phenol reagent 2 H 

solution (Fisher Scientific Company, Fair Lawn, New Jersey) 1:1 with dis­

tilled water. One milliliter of sample was mixed with 5 ml alkaline copper 

reagent and held in a 37 C water bath for 10 min. Then, 0.5 ml of diluted 

phenol reagent was added and it was immediately mixed 30 sec on a Vortex 
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Genie laboratory mixer. After mixing, the sample was Incubated 30 min at 

37 C. Âbsorbance was read at 500 nm. Bovine serum albumin (Pentex Incor­

porated, Kankakee, Illinois) in concentrations of 100 to 700 ug/ml was 

used to make a standard curve. 
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